Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Access to the Document



A Relational Learning Approach to Structure-Activity Relationships in Drug Design Toxicity Studies

Camacho, Rui ; Pereira, Max ; Santos Costa, Ví­tor ; Fonseca, Nuno A. ; Adriano, Carlos ; Simões, Carlos J. V. ; Brito, Rui M. M.

Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516)


Download file

Abstract:
It has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship (SAR) studies, using relational Machine Learning (ML) algorithms, have already been shown to be very useful in the complex process of rational drug design. Despite the ML successes, human expertise is still of the utmost importance in the drug development process. An iterative process and tight integration between the models developed by ML algorithms and the know-how of medicinal chemistry experts would be a very useful symbiotic approach. In this paper we describe a software tool that achieves that goal - iLogCHEM. The tool allows the use of Relational Learners in the task of identifying molecules or molecular fragments with potential to produce toxic effects, and thus help in stream-lining drug design in silico. It also allows the expert to guide the search for useful molecules without the need to know the details of the algorithms used. The models produced by the algorithms may be visualized using a graphical interface, that is of common use amongst researchers in structural biology and medicinal chemistry. The graphical interface enables the expert to provide feedback to the learning system. The developed tool has also facilities to handle the similarity bias typical of large chemical databases. For that purpose the user can filter out similar compounds when assembling a data set. Additionally, we propose ways of providing background knowledge for Relational Learners using the results of Graph Mining algorithms.


Institution: Faculty of Technology, Research Groups in Informatics
DDC classification: Data processing, computer science, computer systems

Suggested Citation:
Camacho, Rui ; Pereira, Max ; Santos Costa, Ví­tor ; Fonseca, Nuno A. ; Adriano, Carlos ; Simões, Carlos J. V. ; Brito, Rui M. M.  (2011)  A Relational Learning Approach to Structure-Activity Relationships in Drug Design Toxicity Studies. Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516), 8(3), 2011

Online-Journal: http://journal.imbio.de/article.php?aid=182
URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2011/5198



 Questions or comments: publikationsdienste.ub@uni-bielefeld.de
 Latest update: 15 Feb 2011
 Legal Notice
OPUS-Logo     OAI compliant      BU Logo
OAI-Logo