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t. Re
ognising a
tions and obje
ts from video material has at-tra
ted growing resear
h attention and given rise to important appli-
ations. However, inje
ting 
ognitive 
apabilities into 
omputer visionsystems requires an ar
hite
ture more elaborate than the traditionalsignal pro
essing paradigm for information pro
essing. Inspired by bi-ologi
al 
ognitive systems, we present a memory ar
hite
ture enabling
ognitive pro
esses (su
h as sele
ting the pro
esses required for s
eneunderstanding, layered storage of data for 
ontext dis
overy, and for-getting redundant data) to take pla
e within a 
omputer vision system.This ar
hite
ture has been tested by automati
ally inferring the s
ore ofa tennis mat
h, and experimental results show a signi�
ant improvementin the overall vision system performan
e | demonstrating that manag-ing visual data in a manner more akin to that of the human brain is akey fa
tor in improving the eÆ
ien
y of 
omputer vision systems.1 Introdu
tionVisual per
eption is an area of 
omputer vision witnessing 
onsiderable progressduring the last few years. Novel learning algorithms (su
h as Support Ve
torMa
hines, AdaBoost and Multiple Classi�er Systems) and models of geometri
invarian
e, pi
ture formation and noise have enhan
ed the 
apability of ma
hineper
eption systems. Nevertheless, visual per
eption systems are built using thesignal pro
essing paradigm for information 
ow: visual data are 
aptured; low-level feature extra
tion algorithms dete
t points or areas of interest in the images;and a de
ision me
hanism determines whether a prede�ned pattern exists. Sin
e
omputer vision appli
ations tend to be developed as appli
ation-spe
i�
 solu-tions, without serious 
onsideration about generi
 data pattern storage or fusinginformation from other sour
es, a bu�er a

essible at ea
h level provides datastorage | while the information 
ow only allows forward intera
tion betweenbuilding blo
ks. This information pro
essing strategy is illustrated in Figure 1(a).While very simple, this ar
hite
ture has been employed in a variety of visualtasks [1{3℄. It is 
lear, however, that ba
kward intera
tion between the variouslevels of data pro
essing is not supported; therefore, it is in
apable of exploiting
ontextual information for reasoning about a s
ene. Moreover, the la
k of ageneri
 data management s
heme 
auses serious problems regarding the storageand (espe
ially) the fusion of information from di�erent sour
es and/or levels ofabstra
tion. This pre
ludes the design of modular 
omputer vision systems wherethe system itself 
an de
ide, in a uni�ed and elegant manner, the data pro
essing
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essing strategies for visual per
eption systems.strategy required for the given task. As exploiting 
ontext for reasoning withina known environment is 
ru
ial for inje
ting 
ognition into a visual per
eptionsystem, a memory ar
hite
ture enabling the 
omputer vision system's reasoningengine to dis
over 
ontextual links within the data needs to be developed. Tothis end, the memory system must allow re-examination of previous data in thelight of newer eviden
e | while a 
ontextual reasoning framework will ensurethat a priori knowledge about the s
ene is also taken into a

ount. This tightly
oupled memory{
ontextual reasoning framework paradigm (as opposed to thesignal pro
essing one) supporting the introdu
tion of 
ognitive 
apabilities in
omputer vision systems is depi
ted in Figure 1(b).In designing a memory system for use with visual per
eption systems, otherissues must be addressed as well | one being the amount of memory availablefor visual data pro
essing. A memory ar
hite
ture not dis
arding low-level visualdata is seriously limited with regard to its appli
ability in real-world appli
a-tions, as it will only be able to hold video data for a limited amount of time.Thus, dis
arding data without 
ompromising the system performan
e is essen-tial. An a
tive memory approa
h 
an solve this problem; memory resour
es 
anbe freed as soon as the system de
ides there is redundant data. However, de-
iding what is redundant in a 
ognitive vision system 
an be tri
ky, sin
e, forvisual data to be deemed as su
h, it has to bear no importan
e to the 
urrentstate of the s
ene. This is de
ided by the system's 
ontextual reasoning engine| whi
h demonstrates that the eÆ
ient handling of 
ontextual information isthe most distinguishing feature between biologi
al 
ognitive vision systems andtheir ma
hine-based 
ounterparts. Consequently, developing a memory infras-tru
ture inspired by biologi
al 
ognitive systems for handling both sensory dataand 
orresponding high-level abstra
tions is a natural 
hoi
e.2 Data fusion in biologi
al and 
omputer vision systems2.1 Biologi
al insights on information fusion and 
ognitionA large body of work in physiology has been devoted to understanding theme
hanisms by whi
h 
ognition is a
hieved in living organisms. Even sin
e the
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3late 1970s, the 
on
ept of `the unity of senses' [4℄ has been studied; this suggeststhat stimuli are usually per
eived by more than one sense, allowing humans toper
eive the same thing in di�erent ways. Biologists 
on
luded that our sensesshare 
ommon per
eption me
hanisms, and that a 
ommon representation ofinput stimuli is adopted to integrate and interpret multi-sensory information viaa single, 
ommon per
eption-enabling me
hanism.Neurologists have independently provided neuron 
onne
tivity models forsensory data fusion supporting this theory [5℄, revealing that no intera
tion be-tween signals transmitted from the senses to the superior 
olli
ulus (the part ofthe brain where sensory data arrives �rst) o

urs | but neurons leaving the su-perior 
olli
ulus are multi-sensory. The superior 
olli
ulus also re
eives informa-tion from the 
erebral 
ortex | the part of the brain that modulates behaviour.Therefore, information fusion using a per
eption-a
tion 
oupling paradigm totake 
ontextual information into a

ount takes pla
e in the superior 
olli
ulus.This provides 
exibility in the information fusion s
heme used in ea
h 
ase andenables the dete
tion of 
on
eptually important events even by a set of weak
ues.Moreover, MEG and EEG s
ans studied in [6, 7℄ reveal the existen
e of ashort-term episodi
 memory for en
oding visual stimuli. These �ndings indi
atethat, for re
ognising known visual patterns within per
eived visual information,humans do not use raw images; instead, features from the input visual data areextra
ted and mat
hed against the known pattern. Clearly, the human brainbeing a highly parallelised information pro
essing system, it has an importantadvantage over state-of-the-art 
omputer vision systems. However, it is the in-formation pro
essing paradigm adopted in biologi
al vision systems that allowsthem to a
hieve a level of eÆ
ien
y so far beyond that even state-of-the-artma
hine vision systems 
an rea
h | not ne
essarily the low-level visual featureextra
tion te
hniques employed.2.2 Cognitive and behavioural models on sensor data managementBiologi
al studies provide interesting insights into how the human brain a
hievessensor fusion. Cognitive and behavioural s
ien
es, however, investigate why sen-sor fusion is required for per
eption. Per
eptual modes [8℄ are an important notionin understanding 
ognitive me
hanisms | suggesting that, when the intention ofthe agent 
hanges, so does the interpretation of a given stimulus. For example, aperson noti
es di�erent things when entering a room just to see what is in it, asopposed to what he/she will noti
e when sear
hing for something. This indi
atesthe presen
e of an adaptive fusion me
hanism for sensory data | proving thatper
eption-a
tion 
oupling is present in living organisms.Sensor fusion must eÆ
iently handle dis
ordan
es among inputs. This 
anbe a
hieved in one of the following ways [9℄: re-
alibrate the sensors until theper
eptual goal is met and sensory input is 
onsistent; suppress o�ending sensorydata; or avoid atta
hing any spatiotemporal 
orresponden
e a
ross sensory data.Therefore, a 
losed-loop 
ontrol topology for sensor fusion has to be developed;bottom-up or top-down approa
hes for asso
iating 
on
epts to sensory input maybe useful in understanding per
eptual pro
esses, but the input-per
ept hierar
hy
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4in real-world s
enarios is not always as straightforward as that, espe
ially whenfeedba
k is involved.The 
ore behaviour of biologi
al 
ognitive systems 
an be divided in twotypes: an investigatory mode, where the system looks for per
eptual informa-tion relevant to a given 
ognition task, and a performatory mode, for perform-ing the task [10℄. Computer-based 
ognitive systems simulate these two modesby bootstrapping and normal operation (deployment) respe
tively. Applying thisstrategy in a 
omputer-based 
ognitive system prevents the (
omputationallyexpensive) bootstrapping pro
ess from being 
onstantly invoked; yet the normaloperation pro
ess 
an re-use it (in form of an intelligent agent) for re-adjustingto sensory input.Cognitive psy
hologists have experimentally demonstrated the presen
e of ashort-term working memory in biologi
al 
ognitive systems [11℄ | in 
ontrast tothe long-term memory used for learning 
on
eptual entities. However, it is possi-ble to utilise this bu�er for visual pro
essing as well as representation [12℄. Datain the short-term working memory are stored very brie
y, but may be instantlyre
alled in full detail (with all their asso
iated attributes). Storage in the long-term memory, however, is asso
iative, relating large numbers of di�ering itemsbased on their 
o-o

urren
es rather than their inherent attributes. Re
all fromthe long-term memory is thus slow (la
king immediate a

ess to the attributedata) and 
ompletely relies on providing suÆ
ient retrieval 
ues related by as-so
iation to the item under 
onsideration. The dis
rete patterns represented inlong-term memory are high-level abstra
tions of sensory representations withinthe short-term working memory, and are originally allo
ated on the basis of howoften that parti
ular set of attributes has o

urred within the working mem-ory [13℄. There is hen
e an inverted relationship between memory retention andinterpretative level amongst human subje
ts.2.3 Data fusion, management and reasoning in 
omputer visionThe �ndings des
ribed above indi
ate that the memory of a biologi
al 
ognitivesystem is two-layered; there is a `working bu�er' (where low-level data is retainedin detail for a limited period of time) and a long-term memory (where 
on
ep-tual pro
essing results are stored for as long as the system sees �t). Whereasthe stru
ture and fun
tion of memory in 
ognitive appli
ations is 
ru
ial forsu

essfully deploying the overall system, it has not been as thoroughly inves-tigated by the 
omputer vision 
ommunity as, for example, feature extra
tionand obje
t/a
tion re
ognition.A model for sensor fusion for di�erent levels of information (raw data, fea-tures, or de
isions about input 
ontent) is des
ribed in [14℄. As real-world sensors
ause information �ssion due to physi
al 
onstraints, a suitably designed fusionpro
ess must 
ountera
t this. Ways of fusing di�erent types of visual pro
essesto enhan
e the robustness of a
tive vision systems are studied in [15℄. Still, thenotion of memory as a storage bu�er is only super�
ially 
overed, the fo
us beingon information fusion for improving the de
ision-making pro
ess.In [16℄, an a
tive memory serves as a basis for fusing information a
rossmodalities and fa
ilitating reasoning on per
eived data for deploying re
ognition
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5systems. This model in
orporates the basi
 apparatus enabling both intrinsi
(tightly linked) and extrinsi
 (loosely linked) pro
esses to manage stored data.Forgetting is 
ited as an example of an intrinsi
 memory pro
ess, while 
onsis-ten
y validation (i.e. reasoning) is a typi
al 
ase of an extrinsi
 pro
ess, thussuggesting that 
ognitive vision tasks 
an be seen as intera
tive memory pro-
esses. While this memory ar
hite
ture is quite 
exible, it still operates on asingle layer | while a memory ar
hite
ture for use with a 
ognitive vision sys-tem also requires a low-level visual data bu�er to be present.Nonetheless, this is a step forward from what most state-of-the-art systemsapply | whi
h is normally dire
t fusion and de
ision-making in the same step, as[14℄ seems to suggest. A number of de
ision-making s
hemes have been employedin 
omputer vision | in
luding Bayesian Networks, Dempster-Shafer theory,Neural Networks, Self-Organising Maps, or parti
le �lters. As resear
hers havegenerally opted for a single-layer de
ision-making me
hanism, they have notaddressed the possibility of dire
tly applying their systems to di�erent domains,or of eÆ
ient storage of visual data and the results of its analysis.3 A Multi-Layer Memory System for Cognitive VisionIn this se
tion, a novel memory infrastru
ture used for the spatio-temporal pro-
esses related to a 
ognition task where the observed pro
ess is reasonably 
on-tinuous over time is presented, and applied in a 
omputer vision task to fa
ilitatethe storage of 
on
eptual results and the inje
tion of 
ognitive 
apabilities for as
ene interpretation and understanding problem | annotating o�-the-air tennismat
h broad
asts. The example appli
ation demonstrates the main 
on
epts andbuilding blo
ks enabling 
ognition in 
omputer vision systems.3.1 Logi
al Ar
hite
tureAs mentioned earlier, a 
ru
ial feature of 
ognitive vision systems is the presen
eof a multi-layer, 
exible memory ar
hite
ture | enabling the management of its
ontent to be dependent on the 
on
eptual importan
e of the 
ontent itself, aswell as fa
ilitating information fusion for de
ision making at all levels. Drawinginspiration for the design of a 
omputer memory system from biologi
al systemswill be a good starting point for enabling 
ognition in 
omputer vision. The basi
layout of the human 
ognition me
hanism is illustrated in Figure 2(a).Cognition in humans utilises three levels of memory storage: a sensory infor-mation bu�er, the short-term, working memory (whi
h is further subdivided intwo parts, handling low-level feature data and elementary 
on
epts respe
tively)and the long-term memory. The sensory information bu�er handles data for onlya very limited time frame (less than a se
ond) and is used at the lowest level ofhuman per
eption, allowing the brain to pro
ess the input stimulus and extra
tpotentially important low-level features. Extra
ted features are then stored ina short-term memory repository | from this stage on, human 
ognitive pro-
esses have full 
ontrol of how feature information will be managed. In a typi
alre
ognition s
enario, the data stored here is typi
ally available for only a fewse
onds, allowing basi
 obje
t/a
tion re
ognition and visual attention tasks totake pla
e. However, the latter requires feedba
k from the 
ognitive 
entre to the
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(b)Fig. 2. Fun
tional 
omparison between (a) the memory ar
hite
ture of the humanbrain, and (b) the proposed system.sensors | whi
h is essential to the adaptability of 
ognitive vision systems todi�erent environments.For handling more abstra
t 
on
epts, a higher level of memory also exists.In this 
ase, memory 
ontents are preserved over a somewhat longer term (upto a minute), while the requirement for 
exibility in representing and fusingmemory 
ontent be
omes apparent; memory 
ontents (and their relationships)are mu
h more appli
ation-spe
i�
. At this level, memory 
ontents are treatedas hypotheses about the s
ene evolution, and 
ombined with other hypotheses(from di�erent sour
es or time s
ales) to assess whether they represent the s
ene
ontent. Hypotheses plausible for the given s
ene are then stored in the long-term system memory. At this level of abstra
tion, the memory repository is
learly appli
ation-spe
i�
, its 
ontent being a tightly-stru
tured set of 
on
epts
on
erning entities and intera
tions in the observed s
ene. This is the highestlevel of 
ompa
tness a
hievable for des
ribing the observations made, and thedata is retained for as long as the system requires it. Rea
hing su
h levels of
ompa
tness and abstra
tion in visual data des
ription are the most importantbene�ts of inje
ting 
ognition in vision systems, allowing operations su
h asintelligent data querying and re-ena
ting the s
ene evolution from a minimaldes
ription data set.Figure 2(b) shows the 
on
eptual ar
hite
ture of the proposed memory in-frastru
ture. Two levels of memory storage exist | a short-term and a long-term
omponent. The former operates equivalently to the human short-term sensoryand low-level working episodi
 memory, whereas the latter fun
tions similarlyto the working and long-term human memory. Both short-term and long-term
omponents are further divided, ea
h into two parts. The short-term memory
onsists of a frame bu�er and a feature bu�er. The frame bu�er 
ontains rawimage data and retains them for a very limited amount of time. The feature
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7bu�er is used by low-level visual feature extra
tion algorithms to store theirresults for elementary obje
t/a
tion re
ognition tasks. The long-term memory
omponent is divided into a hypothesis pool and a 
on
ept memory. The hypoth-esis pool a

umulates plausible hypotheses about high-level entities or 
on
epts;therefore, it operates like the working memory of a biologi
al 
ognitive system.Finally, the 
on
ept memory retains high-level 
on
epts veri�ed by 
ombiningelementary hypotheses and applying the appropriate 
ontextual 
onstraints. Atthis level of abstra
tion, 
on
epts form a tight des
ription of the per
eived s
eneand are treated as fa
tual data, suitable for future referen
e.The inherent hierar
hy in 
ognitive tasks also ne
essitates the presen
e ofa layered stru
ture for information ex
hange between di�erent 
ategori
al do-mains. To this end, a top-level XML �le, outlining the tasks undertaken by indi-vidual modules (and thereby annotating intera
tions between them) is supplied;ea
h module is registered in this 
olle
tion, and all modules' input data sour
esare des
ribed. This 
onvention allows the system to de
ide on its own whethera module needs to be exe
uted, thus saving 
omputational resour
es if low-levelvisual features are available. Finally, this ar
hite
ture allows the system to beeasily re-
on�gured for di�erent 
ognition tasks, provided the modules requiredfor the new task are present. Modules intera
ting with the memory also needto provide information about the semanti
 level of 
ontent they output, whi
h
orrespond to the layers present in the proposed ar
hite
ture.3.2 Memory Content OrganisationWithin the memory system, input data must be suitably represented to allow forthe implementation of reasoning 
apabilities by external pro
esses. As arbitraryinput data stru
tures must be eÆ
iently handled, memory data are stored asXML do
uments. Ea
h pro
ess intera
ting with the memory provides its ownXML s
hema for the data it produ
es and stores within the memory, so thatother pro
esses 
an a

ess that data as well.The size of data items may sometimes pose pra
ti
al issues. Hen
e, whenlarge items (most notably, images) are to be stored, a slightly di�erent strategyis followed; the a
tual data are stored separately in �les and only referen
esto these �les are inserted into the XML memory �les instead. This makes the
omplete memory system resemble a repository, in whi
h feature and 
on
eptdata (whi
h are smaller in size and their stru
ture 
an be des
ribed via XMLs
hemas), are stored inside the XML-based memory, while large data 
hunks arestored in separate �les. Linking those additional memory resour
es to the 
oreXML-based memory is based on the time instant the data is produ
ed, or theduration of time for whi
h the data is relevant. This storage 
onvention allowsus to handle large data items within the memory system more easily; the dataitself is subje
t to the same memory pro
esses as the data stored within theXML memory do
uments.The memory data are stru
tured using observation Dire
ted A
y
li
 Graphs(oDAG's), where ea
h oDAG refers to a single 
ategori
al domain. This 
hoi
ewas made due to the fa
t that the temporal link is prevalent in 
ognitive visiontasks, as the evolution of the s
ene itself is, as a 
on
ept, synonymous with
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8the dis
overy of relations and intera
tions among its entities in the temporaldomain. Another reason is the ease with whi
h the data within an oDAG 
an bemanipulated for implementing reasoning: input observations are a

essed (andmodi�ed) by traversing the graph; adding data at some point is done by addingsub-graphs at that point; and pruning the graph at a point removes the datastored at that point. Finally, observation 
hains 
an be easily manipulated byreasoning tools (su
h as Hidden MarkovModels) for learning underlying 
on
eptsfrom data. In this work, a uni�ed Bayesian framework for 
ontextual reasoningat any semanti
 level [17℄ has been deployed.4 Evolution Tra
king of Tennis Videos as a CognitivePro
essEnabling 
ognition and aiding reasoning in 
ontext for 
omputer vision systemsare the reasons for developing the proposed memory infrastru
ture. In tennis, the
ontexutual information 
onveyed by its rules [18℄ 
an assist a visual per
eptionsystem to de
ide the evolution of a mat
h, as re
e
ted in its s
ore. The 
on
eptualdiagrams re
e
ting the rules of tennis for awarding points and games are shownin Figures 3(a) and 3(b) | sets and the mat
h are awarded similarly to games.
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(b)Fig. 3. Evolution models in tennis: (a) Point award, (b) Game award from points. Thes
ore is noted as <Server> | <Re
eiver> and interpreted as follows: 0* - 0 points(`Love'); 1* - 15 points; 2* - 30 points; 3* - 40 points; 4* - Advantage; 5* - GameThus, to extra
t the s
ore in tennis, the previous s
ore line and all play eventssin
e the last point was awarded are required. Nonetheless, the extra
tion ofthese high-level 
on
epts entails a number of low-level visual feature extra
tionpro
esses and obje
t tra
king/a
tion re
ognition | for obje
ts like the ball andthe players. This information is fused and obje
t intera
tions are dete
ted | su
h
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9as the ball being hit, boun
ing on the 
ourt, or the oÆ
ials making de
isions.Sets of hypotheses about the mat
h evolution are formulated, and the most likelyis 
onsidered to be the out
ome so far. The main tasks required, the sequen
ein whi
h they are performed, and the 
orresponding memory levels where theyoutput their results are illustrated in Figure 4.
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Fig. 4. Sequen
e of dete
tion and tra
king tasks for the tennis annotation system, andthe memory levels the 
orresponding output is stored at. Input 
omes from all levelsof memory storage to the left of, and in
luding, the 
urrent level.The s
heme des
ribed above has been tested on 40 minutes of broad
asttennis play from the Women's Final of the 2003 Australian Tennis Open, aswell as 1 hour of the Men's Final from the same tournament. A total of 80and 136 `play' shots were pro
essed respe
tively, ea
h having one of 6 possibleout
omes; no play; bad serve by either player; point awarded to either player;or in
omplete play. The �rst set of experiments was done without using thefeedba
k 
apabilities of the proposed memory framework; therefore, only thesignal pro
essing paradigm for 
omputer vision tasks (allowing shot-by-shot videoanalysis) was feasible. The se
ond set of experiments was 
arried out with thesame parameters for low-level feature extra
tion as the �rst one, but enablingthe memory system's 
apabilities for information re-assessment and feedba
k;the results are shown in Table 1.Test sequen
e Memory system disabled Memory system enabled(all from Australia (shot-by-shot reasoning) (point-by-point reasoning)2003 Tennis Open) Total Corre
t Rate Total Corre
t RateWomen's Final 80 56 70% 48 42 87.5%Men's Final 136 93 68.38% 99 74 74.75%Table 1. Summary of system performan
e and error 
ausesThus, simply 
on
atenating the out
ome of ea
h shot into an overall des
rip-tion is not an adequate method of tra
king the evolution of the tennis mat
h, asnot all available information is harnessed. However, using the proposed memoryinfrastru
ture for dis
overing and exploiting 
ontext has resulted in a signi�
antperforman
e boost for the overall vision system.5 Con
lusionsIn this work, a memory infrastru
ture allowing 
ognitive pro
esses to take pla
ein 
omputer vision systems has been proposed. Its most distinguishing featureis its ability to manage data in a way 
ondu
ive to dis
overing and exploiting
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ontextual links among them. The 
ombined visual per
eption/ a
tive memorymodel is both reliable and readily adaptable to a wide range of 
ognitive tasksthat require analysis at a number of di�erent semanti
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