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Abstract. Recognising actions and objects from video material has at-
tracted growing research attention and given rise to important appli-
cations. However, injecting cognitive capabilities into computer vision
systems requires an architecture more elaborate than the traditional
signal processing paradigm for information processing. Inspired by bi-
ological cognitive systems, we present a memory architecture enabling
cognitive processes (such as selecting the processes required for scene
understanding, layered storage of data for context discovery, and for-
getting redundant data) to take place within a computer vision system.
This architecture has been tested by automatically inferring the score of
a tennis match, and experimental results show a significant improvement
in the overall vision system performance  demonstrating that manag-
ing visual data in a manner more akin to that of the human brain is a
key factor in improving the efficiency of computer vision systems.

1 Introduction

Visual perception is an area of computer vision witnessing considerable progress
during the last few years. Novel learning algorithms (such as Support Vector
Machines, AdaBoost and Multiple Classifier Systems) and models of geometric
invariance, picture formation and noise have enhanced the capability of machine
perception systems. Nevertheless, visual perception systems are built using the
signal processing paradigm for information flow: visual data are captured; low-
level feature extraction algorithms detect points or areas of interest in the images;
and a decision mechanism determines whether a predefined pattern exists. Since
computer vision applications tend to be developed as application-specific solu-
tions, without serious consideration about generic data pattern storage or fusing
information from other sources, a buffer accessible at each level provides data
storage — while the information flow only allows forward interaction between
building blocks. This information processing strategy is illustrated in Figure 1(a).

While very simple, this architecture has been employed in a variety of visual
tasks [1-3]. It is clear, however, that backward interaction between the various
levels of data processing is not supported; therefore, it is incapable of exploiting
contextual information for reasoning about a scene. Moreover, the lack of a
generic data management scheme causes serious problems regarding the storage
and (especially) the fusion of information from different sources and/or levels of
abstraction. This precludes the design of modular computer vision systems where
the system itself can decide, in a unified and elegant manner, the data processing
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Fig. 1. Information processing strategies for visual perception systems.

strategy required for the given task. As exploiting context for reasoning within
a known environment is crucial for injecting cognition into a visual perception
system, a memory architecture enabling the computer vision system’s reasoning
engine to discover contextual links within the data needs to be developed. To
this end, the memory system must allow re-examination of previous data in the
light of newer evidence while a contextual reasoning framework will ensure
that a priori knowledge about the scene is also taken into account. This tightly
coupled memory—contextual reasoning framework paradigm (as opposed to the
signal processing one) supporting the introduction of cognitive capabilities in
computer vision systems is depicted in Figure 1(b).

In designing a memory system for use with visual perception systems, other
issues must be addressed as well — one being the amount of memory available
for visual data processing. A memory architecture not discarding low-level visual
data is seriously limited with regard to its applicability in real-world applica-
tions, as it will only be able to hold video data for a limited amount of time.
Thus, discarding data without compromising the system performance is essen-
tial. An active memory approach can solve this problem; memory resources can
be freed as soon as the system decides there is redundant data. However, de-
ciding what is redundant in a cognitive vision system can be tricky, since, for
visual data to be deemed as such, it has to bear no importance to the current
state of the scene. This is decided by the system’s contextual reasoning engine
— which demonstrates that the efficient handling of contextual information is
the most distinguishing feature between biological cognitive vision systems and
their machine-based counterparts. Consequently, developing a memory infras-
tructure inspired by biological cognitive systems for handling both sensory data
and corresponding high-level abstractions is a natural choice.

2 Data fusion in biological and computer vision systems
2.1 Biological insights on information fusion and cognition

A large body of work in physiology has been devoted to understanding the
mechanisms by which cognition is achieved in living organisms. Even since the
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late 1970s, the concept of ‘the unity of senses’ [4] has been studied; this suggests
that stimuli are usually perceived by more than one sense, allowing humans to
perceive the same thing in different ways. Biologists concluded that our senses
share common perception mechanisms, and that a common representation of
input stimuli is adopted to integrate and interpret multi-sensory information via
a single, common perception-enabling mechanism.

Neurologists have independently provided neuron connectivity models for
sensory data fusion supporting this theory [5], revealing that no interaction be-
tween signals transmitted from the senses to the superior colliculus (the part of
the brain where sensory data arrives first) occurs — but neurons leaving the su-
perior colliculus are multi-sensory. The superior colliculus also receives informa-
tion from the cerebral cortex  the part of the brain that modulates behaviour.
Therefore, information fusion using a perception-action coupling paradigm to
take contextual information into account takes place in the superior colliculus.
This provides flexibility in the information fusion scheme used in each case and
enables the detection of conceptually important events even by a set of weak
cues.

Moreover, MEG and EEG scans studied in [6,7] reveal the existence of a
short-term episodic memory for encoding visual stimuli. These findings indicate
that, for recognising known visual patterns within perceived visual information,
humans do not use raw images; instead, features from the input visual data are
extracted and matched against the known pattern. Clearly, the human brain
being a highly parallelised information processing system, it has an important
advantage over state-of-the-art computer vision systems. However, it is the in-
formation processing paradigm adopted in biological vision systems that allows
them to achieve a level of efficiency so far beyond that even state-of-the-art
machine vision systems can reach — not necessarily the low-level visual feature
extraction techniques employed.

2.2 Cognitive and behavioural models on sensor data management

Biological studies provide interesting insights into how the human brain achieves
sensor fusion. Cognitive and behavioural sciences, however, investigate why sen-
sor fusion is required for perception. Perceptual modes [8] are an important notion
in understanding cognitive mechanisms — suggesting that, when the intention of
the agent changes, so does the interpretation of a given stimulus. For example, a
person notices different things when entering a room just to see what is in it, as
opposed to what he/she will notice when searching for something. This indicates
the presence of an adaptive fusion mechanism for sensory data — proving that
perception-action coupling is present in living organisms.

Sensor fusion must efficiently handle discordances among inputs. This can
be achieved in one of the following ways [9]: re-calibrate the sensors until the
perceptual goal is met, and sensory input is consistent; suppress offending sensory
data; or avoid attaching any spatiotemporal correspondence across sensory data.
Therefore, a closed-loop control topology for sensor fusion has to be developed;
bottom-up or top-down approaches for associating concepts to sensory input may
be useful in understanding perceptual processes, but the input-percept hierarchy



in real-world scenarios is not always as straightforward as that, especially when
feedback is involved.

The core behaviour of biological cognitive systems can be divided in two
types: an investigatory mode, where the system looks for perceptual informa-
tion relevant to a given cognition task, and a performatory mode, for perform-
ing the task [10]. Computer-based cognitive systems simulate these two modes
by bootstrapping and normal operation (deployment) respectively. Applying this
strategy in a computer-based cognitive system prevents the (computationally
expensive) bootstrapping process from being constantly invoked; yet the normal
operation process can re-use it (in form of an intelligent agent) for re-adjusting
to sensory input.

Cognitive psychologists have experimentally demonstrated the presence of a
short-term working memory in biological cognitive systems [11]  in contrast to
the long-term memory used for learning conceptual entities. However, it is possi-
ble to utilise this buffer for visual processing as well as representation [12]. Data
in the short-term working memory are stored very briefly, but may be instantly
recalled in full detail (with all their associated attributes). Storage in the long-
term memory, however, is associative, relating large numbers of differing items
based on their co-occurrences rather than their inherent attributes. Recall from
the long-term memory is thus slow (lacking immediate access to the attribute
data) and completely relies on providing sufficient retrieval cues related by as-
sociation to the item under consideration. The discrete patterns represented in
long-term memory are high-level abstractions of sensory representations within
the short-term working memory, and are originally allocated on the basis of how
often that particular set of attributes has occurred within the working mem-
ory [13]. There is hence an inverted relationship between memory retention and
interpretative level amongst human subjects.

2.3 Data fusion, management and reasoning in computer vision

The findings described above indicate that the memory of a biological cognitive
system is two-layered; there is a ‘working buffer’ (where low-level data is retained
in detail for a limited period of time) and a long-term memory (where concep-
tual processing results are stored for as long as the system sees fit). Whereas
the structure and function of memory in cognitive applications is crucial for
successfully deploying the overall system, it has not been as thoroughly inves-
tigated by the computer vision community as, for example, feature extraction
and object/action recognition.

A model for sensor fusion for different levels of information (raw data, fea-
tures, or decisions about input content) is described in [14]. As real-world sensors
cause information fission due to physical constraints, a suitably designed fusion
process must counteract this. Ways of fusing different types of visual processes
to enhance the robustness of active vision systems are studied in [15]. Still, the
notion of memory as a storage buffer is only superficially covered, the focus being
on information fusion for improving the decision-making process.

In [16], an active memory serves as a basis for fusing information across

modalities and facilitating reasoning on perceived data for deploying recognition



systems. This model incorporates the basic apparatus enabling both intrinsic
(tightly linked) and eztrinsic (loosely linked) processes to manage stored data.
Forgetting is cited as an example of an intrinsic memory process, while consis-
tency validation (i.e. reasoning) is a typical case of an extrinsic process, thus
suggesting that cognitive vision tasks can be seen as interactive memory pro-
cesses. While this memory architecture is quite flexible, it still operates on a
single layer ~ while a memory architecture for use with a cognitive vision sys-
tem also requires a low-level visual data buffer to be present.

Nonetheless, this is a step forward from what most state-of-the-art systems
apply — which is normally direct fusion and decision-making in the same step, as
[14] seems to suggest. A number of decision-making schemes have been employed
in computer vision including Bayesian Networks, Dempster-Shafer theory,
Neural Networks, Self-Organising Maps, or particle filters. As researchers have
generally opted for a single-layer decision-making mechanism, they have not
addressed the possibility of directly applying their systems to different domains,
or of efficient storage of visual data and the results of its analysis.

3 A Multi-Layer Memory System for Cognitive Vision

In this section, a novel memory infrastructure used for the spatio-temporal pro-
cesses related to a cognition task where the observed process is reasonably con-
tinuous over time is presented, and applied in a computer vision task to facilitate
the storage of conceptual results and the injection of cognitive capabilities for a
scene interpretation and understanding problem  annotating off-the-air tennis
match broadcasts. The example application demonstrates the main concepts and
building blocks enabling cognition in computer vision systems.

3.1 Logical Architecture
As mentioned earlier, a crucial feature of cognitive vision systems is the presence
of a multi-layer, flexible memory architecture — enabling the management of its
content to be dependent on the conceptual importance of the content itself, as
well as facilitating information fusion for decision making at all levels. Drawing
inspiration for the design of a computer memory system from biological systems
will be a good starting point for enabling cognition in computer vision. The basic
layout of the human cognition mechanism is illustrated in Figure 2(a).
Cognition in humans utilises three levels of memory storage: a sensory infor-
mation buffer, the short-term, working memory (which is further subdivided in
two parts, handling low-level feature data and elementary concepts respectively)
and the long-term memory. The sensory information buffer handles data for only
a very limited time frame (less than a second) and is used at the lowest level of
human perception, allowing the brain to process the input stimulus and extract
potentially important low-level features. Extracted features are then stored in
a short-term memory repository from this stage on, human cognitive pro-
cesses have full control of how feature information will be managed. In a typical
recognition scenario, the data stored here is typically available for only a few
seconds, allowing basic object/action recognition and visual attention tasks to
take place. However, the latter requires feedback from the cognitive centre to the
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Fig. 2. Functional comparison between (a) the memory architecture of the human
brain, and (b) the proposed system.

sensors which is essential to the adaptability of cognitive vision systems to
different environments.

For handling more abstract concepts, a higher level of memory also exists.
In this case, memory contents are preserved over a somewhat longer term (up
to a minute), while the requirement for flexibility in representing and fusing
memory content becomes apparent; memory contents (and their relationships)
are much more application-specific. At this level, memory contents are treated
as hypotheses about the scene evolution, and combined with other hypotheses
(from different sources or time scales) to assess whether they represent the scene
content. Hypotheses plausible for the given scene are then stored in the long-
term system memory. At this level of abstraction, the memory repository is
clearly application-specific, its content being a tightly-structured set of concepts
concerning entities and interactions in the observed scene. This is the highest
level of compactness achievable for describing the observations made, and the
data is retained for as long as the system requires it. Reaching such levels of
compactness and abstraction in visual data description are the most important
benefits of injecting cognition in vision systems, allowing operations such as
intelligent data querying and re-enacting the scene evolution from a minimal
description data set.

Figure 2(b) shows the conceptual architecture of the proposed memory in-
frastructure. Two levels of memory storage exist — a short-term and a long-term
component. The former operates equivalently to the human short-term sensory
and low-level working episodic memory, whereas the latter functions similarly
to the working and long-term human memory. Both short-term and long-term
components are further divided, each into two parts. The short-term memory
consists of a frame buffer and a feature buffer. The frame buffer contains raw
image data and retains them for a very limited amount of time. The feature
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buffer is used by low-level visual feature extraction algorithms to store their
results for elementary object/action recognition tasks. The long-term memory
component is divided into a hypothesis pool and a concept memory. The hypoth-
esis pool accumulates plausible hypotheses about high-level entities or concepts;
therefore, it operates like the working memory of a biological cognitive system.
Finally, the concept memory retains high-level concepts verified by combining
elementary hypotheses and applying the appropriate contextual constraints. At
this level of abstraction, concepts form a tight description of the perceived scene
and are treated as factual data, suitable for future reference.

The inherent hierarchy in cognitive tasks also necessitates the presence of
a layered structure for information exchange between different categorical do-
mains. To this end, a top-level XML file, outlining the tasks undertaken by indi-
vidual modules (and thereby annotating interactions between them) is supplied;
each module is registered in this collection, and all modules’ input data sources
are described. This convention allows the system to decide on its own whether
a module needs to be executed, thus saving computational resources if low-level
visual features are available. Finally, this architecture allows the system to be
easily re-configured for different cognition tasks, provided the modules required
for the new task are present. Modules interacting with the memory also need
to provide information about the semantic level of content they output, which
correspond to the layers present in the proposed architecture.

3.2 Memory Content Organisation

Within the memory system, input data must be suitably represented to allow for
the implementation of reasoning capabilities by external processes. As arbitrary
input data structures must be efficiently handled, memory data are stored as
XML documents. Each process interacting with the memory provides its own
XML schema for the data it produces and stores within the memory, so that
other processes can access that data as well.

The size of data items may sometimes pose practical issues. Hence, when
large items (most notably, images) are to be stored, a slightly different strategy
is followed; the actual data are stored separately in files and only references
to these files are inserted into the XML memory files instead. This makes the
complete memory system resemble a repository, in which feature and concept
data (which are smaller in size and their structure can be described via XML
schemas), are stored inside the XML-based memory, while large data chunks are
stored in separate files. Linking those additional memory resources to the core
XML-based memory is based on the time instant the data is produced, or the
duration of time for which the data is relevant. This storage convention allows
us to handle large data items within the memory system more easily; the data
itself is subject to the same memory processes as the data stored within the
XML memory documents.

The memory data are structured using observation Directed Acyclic Graphs
(0DAG’s), where each cDAG refers to a single categorical domain. This choice
was made due to the fact that the temporal link is prevalent in cognitive vision
tasks, as the evolution of the scene itself is, as a concept, synonymous with



the discovery of relations and interactions among its entities in the temporal
domain. Another reason is the ease with which the data within an oDAG can be
manipulated for implementing reasoning: input observations are accessed (and
modified) by traversing the graph; adding data at some point is done by adding
sub-graphs at that point; and pruning the graph at a point removes the data
stored at that point. Finally, observation chains can be easily manipulated by
reasoning tools (such as Hidden Markov Models) for learning underlying concepts
from data. In this work, a unified Bayesian framework for contextual reasoning
at any semantic level [17] has been deployed.

4 Evolution Tracking of Tennis Videos as a Cognitive
Process

Enabling cognition and aiding reasoning in context for computer vision systems
are the reasons for developing the proposed memory infrastructure. In tennis, the
contexutual information conveyed by its rules [18] can assist a visual perception
system to decide the evolution of a match, as reflected in its score. The conceptual
diagrams reflecting the rules of tennis for awarding points and games are shown
in Figures 3(a) and 3(b) — sets and the match are awarded similarly to games.
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Fig. 3. Evolution models in tennis: (a) Point award, (b) Game award from points. The

score is noted as <Server> <Receiver> and interpreted as follows: 0* - 0 points
(‘Love’); 1* - 15 points; 2% - 30 points; 3% - 40 points; 4* - Advantage; 5* - Game

Thus, to extract the score in tennis, the previous score line and all play events
since the last point was awarded are required. Nonetheless, the extraction of
these high-level concepts entails a number of low-level visual feature extraction
processes and object tracking/action recognition — for objects like the ball and
the players. This information is fused and object interactions are detected  such



as the ball being hit, bouncing on the court, or the officials making decisions.
Sets of hypotheses about the match evolution are formulated, and the most likely
is considered to be the outcome so far. The main tasks required, the sequence
in which they are performed, and the corresponding memory levels where they
output their results are illustrated in Figure 4.
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Fig. 4. Sequence of detection and tracking tasks for the tennis annotation system, and
the memory levels the corresponding output is stored at. Input comes from all levels
of memory storage to the left of, and including, the current level.

The scheme described above has been tested on 40 minutes of broadcast
tennis play from the Women’s Final of the 2003 Australian Tennis Open, as
well as 1 hour of the Men’s Final from the same tournament. A total of 80
and 136 ‘play’ shots were processed respectively, each having one of 6 possible
outcomes; no play; bad serve by either player; point awarded to either player;
or incomplete play. The first set of experiments was done without using the
feedback capabilities of the proposed memory framework; therefore, only the
signal processing paradigm for computer vision tasks (allowing shot-by-shot video
analysis) was feasible. The second set of experiments was carried out with the
same parameters for low-level feature extraction as the first one, but enabling
the memory system’s capabilities for information re-assessment and feedback;
the results are shown in Table 1.

Test sequence Memory system disabled|| Memory system enabled

(all from Australia || (shot-by-shot reasoning) ||(point-by-point reasoning)
2003 Tennis Open)||Total{Correct Rate||Total|Correct Rate
Women’s Final 80 56 70% 48 42 87.5%
Men'’s Final 136 93 68.38% 99 74 74.75%

Table 1. Summary of system performance and error causes

Thus, simply concatenating the outcome of each shot into an overall descrip-
tion is not an adequate method of tracking the evolution of the tennis match, as
not all available information is harnessed. However, using the proposed memory
infrastructure for discovering and exploiting context has resulted in a significant
performance boost for the overall vision system.

5 Conclusions

In this work, a memory infrastructure allowing cognitive processes to take place
in computer vision systems has been proposed. Its most distinguishing feature
is its ability to manage data in a way conducive to discovering and exploiting
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contextual links among them. The combined visual perception/ active memory
model is both reliable and readily adaptable to a wide range of cognitive tasks
that require analysis at a number of different semantic levels. The proposed
system has been evaluated on the analysis of tennis video material, with very
encouraging results.
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