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Abstract. Self-Localization is a crucial task for mobile robots. It is not only a re-
quirement for auto navigation but also provides contextual information to support
human robot interaction (HRI). In this paper we present an active vision-based
localization method for integration in a complex robot system to work in hu-
man interaction scenarios (e.g.home-tour) in a real world apartment. The holistic
features used are robust to illumination and structural changes in the scene. The
system uses only a single pan-tilt camera shared between different vision applica-
tions running in parallel to reduce the number of sensors. Additional information
from other modalities (like laser scanners) can be used, profiting of an integra-
tion into an existing system. The camera view can be actively adapted and the
evaluation showed that different rooms can be discerned.

1 Introduction
Self-Localization is concerned with determining a robot’s spatial position with respect
to the environment. This position is not only relevant to facilitate autonomous naviga-
tion but also to enable situation-aware interaction between a robot and its users. While
for the first mostly exact metric position information within a known map is required
to allow path planning, for the latter case a coarse and symbolic localization might al-
ready be sufficient. Compared to human-human interaction room names (living room,
hallway) are much more appropriate as location information than position coordinates
on a map and allow direct communication between the robot and the user about the en-
vironment for a joint exploration. Further advantages of such a coarse localization are
faster learning and classification without requiring a pre-known map. For a complete lo-
calization multi modal mobile robots can incorporate different localization methods to
refine each other or being activated separately depending on the desired level of position
information.

As an example scenario benefiting from symbolic, coarse position, we identified the
home-tour scenario. In this scenario, a human user starts a robot for the first time in her
apartment and shows it around to familiarize it with this new environment. The human
introduces particular parts of the environment and tells the robot ”Look robot, this is my
living room”, for instance. After thehome-tour the robot should be able to introduce
other people to the apartment in the same way.

For such a real world scenario localization methods have to be robust in different
ways. A desired property of localization methods is the robustness concerning minor
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changes in the structure of the scene caused by rearranged furniture, new items like
plants or pictures on the wall for instance. Depending on the sensor used for localiza-
tion this can be hard to accomplish. The laser scans for a rearrangement of furniture in
one room (see Fig. 4b and 4c) look totally different. Furthermore localization methods
often work very well in predefined static areas like labs or offices. In those scenes dis-
turbances caused by dynamic changes in the structural layout of a scene like moving
objects or walking people talking to the robot are rare. When using a mobile robot in
a real life scenario however one has to adapt to those dynamic changes in the scene.
Additional to structural changes, the system should also be invariant to small illumina-
tion changes. Many vision-based systems using histograms have troubles with unstable
light conditions [1].

We developed a vision-based localization method that uses so called gist-based fea-
tures [2,3] capturing the holistic structure of a scene. The approach features the prop-
erties mentioned above and is designed for efficient integration into a complex mobile
robot system BIRON. The localization module can also use additional information from
other sensors and uses a shared camera. In the robot system the localization part can be
fully controlled by speech. Thus localization training and application can be investi-
gated from a user centered point of view.

2 Comparing Alternative Localization Methods
In this section we give a short overview of existing vision-based localization methods.
Many different methods exist to localize a mobile robot. They can be divided up into
three main categories: geometric, topological and hybrid [1]. The first one tries to find
a metric position for the robot mostly based on either a given map, based on the knowl-
edge of the start position [4] or by continuously building a map during localization
(SLAM) [5]. Methods belonging to the second group only estimate the coarse location
often only knowing the neighbor relations of possible locations stored in an adjacency
map or even without a pre-known map [1]. Location methods can also be divided into
different groups based on the sensors used. Many geometric variants use more or less
accurate sensors like GPS, compass, odometry information, laser scanners or sonar sen-
sor to name the most common ones [6]. For a coarse localization low cost sensors like
a camera are often sufficient. Quite some research has been done in this field of so
called vision-based localization approaches [7,8,9,10]. These methods differ in the fea-
tures computed for each image and in the classifier used to match them to representative
images prerecorded for each possible location. Most of them use color histograms com-
puted on images recorded with an omni-directional camera [1]. The use of histograms
can be problematic as they are sensitive to changes in illumination. Hence the features
need to be extended to capture structural properties as well. Classifying a single image
of a complete scene into holistic classes has been tried in many different ways. Most
methods are example-based classification approaches using features based on color and
structure [11,12,13,14]. [14] also evaluated the application for place recognition, how-
ever with rather a focus on context-based object recognition than on integration on a
mobile robot.

None of the vision-based methods mentioned above uses an active vision approach
to change the field of view in cases of low confidence for a location. These can occur
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through dynamic objects (e.g. moving people) occluding the viewfield or through other
applications sharing the same camera and focusing it on areas not specific for local-
ization (e.g. face detector focuses on heads of humans). Many vision-based methods
require an omni-directional camera solely for the localization task in order to receive
stable results in respect to rotational variances and small dynamical changes in the
scene. We propose a new localization method based on existing methods adapted to
work with only a single pan-tilt camera which is also used for other detection purposes.
Active sensors used during localization have already been evaluated for a geometric
map-based localization method [4].

Only few vision-based approaches combine geometric and topological localization
methods like done in [15]. We integrated the localization method in a framework, which
is easily extendable by different localization algorithms sharing same sensors. In the
following section we describe how the system classifies an image of the current view
into a scene.

3 Holistic Scene Classification

A main problem of classifying holistic scenes lies in finding a compact and yet de-
scriptive representation of scenes. How can we extract enough information from as few
images as possible to retrieve information about the class the scene belongs to? Oliva
and Torralba [16] suggest to use an holistic view on a scene to entirely describe its char-
acter. This representation corresponds to the perceptual gist [3], which according to the
author is similar to the way humans perceive scenes. Based on successful work using
this theory [2], we compute a feature vector using neighborhood filters. This way the
features can be computed very efficiently and independently from each other. We use a
boosting algorithm to select scene specific features that separate a scene from all others.
This selection process helps to speed up the classification process as suggested in [17].

3.1 Feature Selection

We compute 12 different filter responses (11 edge filters with different orientations, 1
corner filter) as well the image intensity itself from 46 differently sized and located re-
gions of the image. These filtered patches are reduced to two values by taking the sum
of the pixels for each patch to the power of 2 (energy) and 4 (kurtosis) respectively.
Because of the nature of the boosting algorithm the number of patches and filters can
not be increased arbitrarily as a single, too specific feature will not be discriminative
enough. Too few filters and patches on the other side will decrease the flexibility con-
cerning class types that can be trained using this feature set. Compared to the perceptual
gist, edges and corners seem a good computational representation as they also capture
the coarse structure of a scene as shown with some typical filter responses depicted
in Fig. 2. Because of the feature selection boosting performs during training, we can
compute many features (1196 = 13 ∗ 46 ∗ 2; 12 filters and image intensity, 46 patches,
energy and kurtosis) and receive the most discriminative ones for the training set. In
Fig. 1 the most discriminative feature for each scene of the training set are shown. For
example for the living room the big window and the shelve result in higher horizontal
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edge responses than in other classes. For the hallway the lackof many horizontal edges
separates this scene from the others.

Fig. 1: Best features selected for each scene, from left to right: living room with 5px horizontal
edge filter (p = −1), hallway with 7px horizontal edge filter (p = 1), dinner room with
light intensity (p = 1), kitchen with light intensity (p = −1).

Fig. 2: Typical filter responses for different scenes, from left to right: horizontal edges in the
living room, vertical edges in the hallway, slanted edges in the dinner room and corners
in the kitchen.

3.2 Classification

AdaBoost [18] has been successfully applied to many classification problems [17]. As
mentioned above, boosting can be used to perform a selection of most discriminative
features, thus reducing the computational cost during the classification process. Each
selected feature can be seen as a weak binary classifier separating a class from the rest.
We use discrete AdaBoost [19] to train a set of such weak binary classifiershi(x) based
on thresholdsσi and polaritiespi (specifying whetherxi has to be greater thanσi to
belong to the class or vice versa) using only thei-th dimension of the feature vectorx:

hi(x) =

{

1 if pi · xi < piθi

0 otherwise

A weighted majority vote of the weak classifiers using the boosted weightsαr defines
the strong classifier:

H(x) =
∑

r

αrhr(x)

For each boosting round the algorithm computes one weak classifier (hr) which cor-
responds to the selection of one feature. The number of rounds defines the number of
features selected. In a one-vs-all scheme we computen strong classifiersHu(x) that
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separate classu from the rest. The strongest classifierH determines the final class
c = argmax

u
Hu. Since we are classifying single frames in a continuous image se-

quence, neighbored frames are likely to belong to the same class, most the time. Hence
we average the final class decision over a multi staged frame window (e.g. 5,10 and 20
frames) using a majority voting scheme.

3.3 Rejection Scheme and Active Vision

A very simple rejection scheme can be achieved by setting a thresholdtmax for the
winning classifierHc. This however may cause falsely rejected images, when classes
are not very distinct. We adapt the thresholding to the classes itself by using a separate
classifier that learns to classify the outputHc into eitherclass or rejection. We use a
collection of heuristically chosen confidence features as a feature vector. Among them
are the distancesx − θi of the data features to the thresholds of the 4 best weak clas-
sifiers, the sum of those distances, the output of the strong classifier for the winning
classHc as well as its differences to the other strong classifiersHu −Hc. A perceptron
is trained to find a hyperplanew that splits misclassified examples from correct ones.
This allows to compute a confidence valuec = w

T
x on a test set. Examples yielding

a confidencec < 0 are rejected. We average the confidence values over multiple frame
windows using majority voting. Instead of just ignoring an image when it gets rejected,
we interpret this information that somehow the scene is occluded (e.g. by a person in the
field of view or by a bad view caused by a different application sharing the same cam-
era). Thus we implemented 3 attempts to resolve this occlusion by panning the camera
away from its current field of view. This can be done either by panning around a fixed
angle until no rejection occurs, by moving along a trajectory trying to avoid typically
moving humans in front of the robot or by moving the camera to the angle where the
laser ranger (if available) detects the deepest area in the scene.

4 Building the Integrated System BIRON

BIRON- the Bielefeld Robot Companion was developed as a demonstrator in home-like
surroundings regarding to thehome-tour scenario. It bases on thePioneer PeopleBotTM

from ActiveMedia (see Fig. 3). The robot has a height of 145 cm and is equipped with
several sensors to obtain information about the environment and the surrounding hu-
mans: a Sick laser range finder for a frontal area perception and leg detection with
a range of180◦, two farfield microphones for sound source localization, and a touch
screen display for direct user input. The pan-tilt color camera mounted on the top of
the robot acquires detailed images of the scene like furniture, hand-size objects, and
the upper body part, especially the face, of human interaction partners. A second color
video camera is mounted below the microphones and used for less detailed scene per-
ception and deictic gesture detection. Within the robot chassis two PCs are embedded
connected by Fast-Ethernet for controlling the drive, on-board sensors, sound local-
ization and person tracking with interaction attention. Paying tribute to the increasing
demand of computational power based on the growing amount of software modules
integrated on BIRONtwo additional notebooks mainly used for image processing as
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Fig. 3: Hardware composition (a) and integration of the localization module (darkened) into the
existing (bright) robot control architecture (b) of BIRON.

face detection, object recognition and the visual localization are fixed at the bottom
platform. These are connected to the internal PCs by LAN via router and by wireless
LAN to a third notebook (Pentium Mobile 1.5GHz 768MB Ram) running the speech
recognition and dialog management. For the successful and efficient integration of the
different modules not only sufficient calculation power is needed but also a well de-
signed integration architecture [20] is required, enabling an easy and fast integration of
new modules like the presented vision-based localization. We chose a hybrid architec-
ture as proposed by [21] containing one layer for deliberative modules, one layer for
reactive components and one intermediate layer for synchronizing the results of the dif-
ferent layers and modules. The synchronization becomes necessary as all modules are
operating independently, exchanging information by XML. The XML communication
is supported by the XML Communication Framework (XCF) [22] capable of handling
both, Remote Method Invocation (RMI) via function server for irregular data exchange
on certain events and 1:n data streaming via one publisher and n subscribers for frequent
and periodically data exchange, e.g. for publishing laser data. For laser data and other
uninterpreted data like video or audio information a direct data connection between the
concerning modules is established. Preprocessed data is exchanged via theExecution
Supervisor (ESV) as depicted in Fig. 3. As the central module of the intermediate layer
the ESV is responsible for the previously mentioned synchronization of the high level
data flow between the modules. Therefore the ESV is in principle a finite state machine
using the data input of the different modules asEvents for a transition from state A
to a state B. For any transition a number ofOrders can be sent to the modules of the
reactive layer containing new operating parameters (e.g. the Person Attention System
now fixates a certain person instead of looking around). The modules of the deliberative
layer may also get new information from the ESV during a transition, but they are only
informed about the currentState of the system and are ”free” to react depending only
on their task. If an event from a deliberative module is received by the ESV that can not
be processed at the current state the event is queued until an according state is entered
or the event becomes too old. In the latter case the corresponding deliberative module
will be notified that the sent data was not processed by aReject message.
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Using these predefined interface structures of the ESV the localization module is
able to exchange information with many of the remaining modules in the overall system.
Therefore we will shortly describe the remaining modules and how they can interact
with the localization module:

Speech Recognition, Speech Understanding, and DialogThe speech recognition
system [23] translates the user utterances into words, which are feed to the speech un-
derstanding [24]. The speech understanding uses not only grammatical information for
the syntactical analysis of the speech recognition results, but can also enhance these
results taking into account the semantical meaning of an utterance as well. Finally
the information is given to the Dialog [25] converting both natural spoken language
into processable events and the current system procedures into human-oriented speech.
Given an user utterance like: ”This is the kitchen.” a label for the current position will
be sent to the ESV for transmitting it to the localization module.

Gesture Detection and Object Attention SystemWhile the Dialog may provide
label information for the Localization the Gesture Detection and Object Attention Sys-
tem (OAS) [26] can use the localization information. The OAS gathers information
about an object at which a person points. After a pointing gesture is detected by the
Gesture Detection it sends the estimated target coordinates to the OAS. Without the
Localization the OAS receives only the relative coordinates from Gesture Detection.
To store which objects are common for a certain area like ’the glasses are at the living
room’ and such to increase the robot’s abilities, the information from the localization
module can be used.

Person Tracking and Attention SystemBesides label information from the Dia-
log the presented localization is able to use additional information from other modules
like the Person Attention System (PTA) if available to increase its robustness. The
PTA [27] tracks multiple humans by fusing information from different sensors. There-
fore the anchoring approach by Coradeschi and Saffiotty [28] is used for each modality:
Laser scans are used for classifying pairs of legs, a speaker localization is performed
on audio data, and both position and gazing direction of faces are detected on video
images. Subsequently the person most likely to interact with the robot is selected and
data concerning this person is delivered. This data also contains the current person po-
sition which can be used by the localization module for the previously mentioned active
vision. In case of occlusion by a person the camera can be controlled to look away from
the person position given by the PTA. Even if no PTA was available the Localization
can directly read the laser distances from the Hardware Interface module aligning robot
and camera to a direction with a minimum distance to the next obstacle.

5 Experimental Evaluation

We focus our system to be usable in a real worldhome-tour. Hence, we simulated such
a scenario by showing the robot 4 different rooms (living room, hallway, dinner room,
kitchen) for various viewpoints selected by a user who is familiar with the apartment
and had no idea about the methods used. The tour and the points for training are shown
in Fig. 4a. We captured the image sequences from the robot viewpoint at those locations
(marked as red circles in Fig. 4) by panning the camera about 90-120 degrees (denoted
by the triangle on each red circle in Fig. 4) and without manually selection. Depending
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(a) training (b) testing (c) rearranged

Fig. 4: Different tours through the apartment for training, testing and with rearranged living
room.

on the number of viewpoints and degrees for panning through the scene for each room,
we recorded 3075, 1164, 726 and 471 images for the living room, hallway, dining room
and kitchen. Example images are shown in Fig. 1. We used AdaBoost as described in
section 3 to train the classifier 50 boosting rounds on those images. After the training we
recorded images in the same way for the testing in the same way as described above. The
scenes where recorded at different locations (see Fig. 4b) in the rooms, without moving
objects (e.g. humans) in the view field and with minor changes like slightly moved
chairs and accessories on furniture. For the test images with a clear view on the scene
(e.g. no people walking in front of the robot), the classification rates are applicable for
localization, as the results show in Tab. 1. Even for the rearranged living room (Fig. 4c)
the classification is about 90% correct. Algorithms solely based on the laser scans might
fail at this point since the depth profiles after rearrangement look totally different. For a
realhome-tour with humans interacting with the robot, the classification rates are only
acceptable for the living room and dinner room (see Tab. 1). Because of the small space
in the hallway and kitchen the human had to stand very close to the robot occluding
most of the scene. However both rejection schemes show high rejection rates for these
small rooms. In those cases the active vision module can pan the camera away from the
user using one of the three modes in the hope to capture a clear view onto the scene
(although this was not used in the evaluation). By increasing the thresholds for both
rejection schemes it possible to decrease the false-positive rate as only absolute certain
classification results will be accepted. However the trade-off will be more cases where
the robot has to look thus increasing the response time. Because of the use of edge and
corner filters, the classification results are also stable to illumination changes to some
extend.

6 Summary & Outlook

We proposed an active vision-based localization approach for an integrated, mobile
robotic system using a pan-tilt camera shared with other vision components running on
the platform. It applies holistic visual features allowing the approach to directly facil-
itate human-robot interaction in real world settings by means of symbolic localization
information like room names. Being integrated in the system architecture of the robotic
system, our localization approach can be interactively trained. Also additional informa-
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no humans
room correct (Fig.4b / Fig.4c)
living 89% (88% / 90%)
hallway 76%
dinner 89%
kitchen 75%

humans,H < 0

correct rejected
99% 14%
16% 43%
61% 52%
25% 35%

humans,c < 0

correct rejected
100% 7%
0% 27%
61% 12%
18% 3%

Table 1: Classification rate duringhome-tour. Left table shows percentage of correct classified
images without humans in the field of view, the middle table shows rates for images
with human interacting with the robot and using the simple rejection scheme (rejected
images could not be classified in any of the classes), the right table one shows results
using the advanced rejection scheme instead.

tion from other modalities like laser scanner can be used. The overall localization can
be easily extended by alternative localization methods.

Different rejection schemes are being used to trigger active control of the camera in
cases of uncertainty of classification to make the approach feasible even in challenging
settings. The localization method has been successfully tested in a real world apartment
in a typical human-robot interaction scenario (home-tour). The system turned out to be
quite robust to changes in illumination and restructuring of the scene.

Though the currently implemented active vision strategies already allow to make
the classification more robust, further elaborated approaches promise to increase the
performance. As part of ongoing research a joint logic between different localization
results would be of interest to receive better and more stable results. Also a more ex-
haustive evaluation of the human interaction scenario would help to assess the amount
of restructuring the scene the system can deal with.

References

1. Ulrich, I., Nourbakhsh, I.R.: Appearance-based place recognition for topological localiza-
tion. In: Proceedings of IEEE International Conference on Robotics and Automation. (2000)
1023–1029

2. Murphy, K., Torralba, A., Freeman, W.T.: Using the forest to see the tree: a graphical model
relating features, objects and the scenes. In: Advanced Neural Information Processing Sys-
tems, Vancouver, BC, MIT Press (2003)

3. Oliva, A.: Gist of a scene. In: Neurobiology of attention. Academic Press, Elsevier, San
Diego, CA (2005) 251–256

4. Burgard, W., Fox, D., Thrun, S.: Active mobile robot localization. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), San Mateo, CA,
Morgan Kaufmann (1997)

5. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the
simultaneous localization and map building (slam) problem. In: Robotics and Automation,
IEEE Transactions on. Volume 17. (2001) 229–241

6. Gutmann, J., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localiza-
tion methods (1998)

7. Blaer, P., Allen, P.K.: Topological mobile robot localization using fast vision techniques. In:
ICRA. (2002) 1031–1036

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



8. Kosecka, J., Zhou, L., Barber, P., Duric, Z.: Qualitative image based localization in indoors
environments. CVPR02 (2003) 3

9. Wolf, J., Burgard, W., Burkhardt, H.: Robust vision-based localization for mobile robots
using an image retrieval system based on invariant features. In: ICRA. (2002) 359–365

10. Dudek, G., Jugessur, D.: Robust place recognition using local appearance based methods.
In: ICRA. (2000) 1030–1035

11. Serrano, N., Savakis, A.E., Luo, J.: A computationally efficient approach to indoor/outdoor
scene classification. In: 16th International Conference on Pattern Recognition (ICPR). Vol-
ume 4. (2002) 146–149

12. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: IEEE International
Workshop on Content-based Access of Image and Video Databases, in conjunction with
ICCV’98. (1998) 42–51

13. Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.J.: Image classification for content-based
indexing. In: IEEE Transactions on Image Processing. Volume 10. (January 2001) 117–130

14. Torralba, A., Murphy, K., Freeman, W., Rubin, M.: Context-based vision system for place
and object recognition. In: ICCV. (2003) 273–280

15. Georgiev, A., Allen, P.K.: Localization methods for a mobile robot in urban environments.
IEEE Transactions on Robotics20(5) (October 2004) 851–864

16. Oliva, A., Torralba, A.B.: Modeling the shape of the scene: A holistic representation of the
spatial envelope. International Journal of Computer Vision42(3) (2001) 145–175

17. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Volume 1.,
Kauai, HI, USA (2001) 511–518

18. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences55(1) (1997) 119–139

19. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of
boosting. Technical report, Dept. of Statistics, Stanford, University Technical Report (1998)

20. Kleinehagenbrock, M., Fritsch, J., Sagerer, G.: Supporting advanced interaction capabilities
on a mobile robot with a flexible control system. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. Volume 3., Sendai, Japan (September/October 2004) 3649–3655

21. Arkin, R.C.: Path planning for a vision-based autonomous robot. In: Proc. SPIE Conf. on
Mobile Robots, Cambridge, MA (October 1986) 240–249

22. Wrede, S., Fritsch, J., Bauckhage, C., Sagerer, G.: An XML Based Framework for Cognitive
Vision Architectures. In: Proc. Int. Conf. on Pattern Recognition. Number 1 (2004) 757–760

23. Fink, G.A.: Developing HMM-based recognizers with ESMERALDA. In Matoušek, V.,
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