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Abstract. Defined as attentive process in presence of visual sequences,
dynamic visual attention responds to static and motion features as well.
For a computer model, a straightforward way to integrate these features
is to combine all features in a competitive scheme: the saliency map
contains a contribution of each feature, static and motion. Another way
of integration is to combine the features in a motion priority scheme: in
presence of motion, the saliency map is computed as the motion map, and
in absence of motion, as the static map. In this paper, four models are
considered: two models based on a competitive scheme and two models
based on a motion priority scheme. The models are evaluated experimen-
tally by comparing them with respect to the eye movement patterns of
human subjects, while viewing a set of video sequences. Qualitative and
quantitative evaluations, performed in the context of simple synthetic
video sequences, show the highest performance of the motion priority
scheme, compared to the competitive scheme.

1 INTRODUCTION

Motion is of fundamental importance in biological vision systems. Specifically,
motion is involved in visual attention, where rapid detection of moving objects
is essential for adequate interaction with the environment [1]. Given the high
relevance of temporal aspects in visual attention mechanisms, motion informa-
tion as well as static information must be considered in the computer model of
dynamic visual attention.

During the two last decades, computer models simulating human visual at-
tention have been widely investigated. Most of them rely on the feature integra-
tion theory [2]. Many models used today stem from the classical saliency-based
model proposed by Koch and Ullman [3], apply to still images and are used for
detecting the most informative parts of an image, on which higher level tasks can
then focus. This paradigm is used in various applications including color image
segmentation [4] and object recognition [5]. Dynamic scene analysis is another
field of interest where computer visual attention is applicable [6, 7].

In the literature, several ways have been proposed for extending the classical
model of visual attention or, to state it differently, for combining the static and
motion contributions. In [8], the motion channel is integrated with the other
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static channels at the same level, as additional channel. In [9] and [10], other
ways of motion integration are proposed. Over all the proposed models in the
literature, they can be classified in two distinct map integration schemes: (1) the
competitive scheme and (2) the motion priority scheme.

In this article, both schemes are described and discussed. Then, four dynamic
models, issued from both schemes, are considered. Their performance is evalu-
ated experimentally by comparing the models with respect to the eye movement
patterns of a population of human subjects, while viewing a set of video se-
quences. Qualitative and quantitative results conclude to the superiority of the
motion priority scheme.

The rest of the paper is structured as follow. Section 2 describes both inte-
gration schemes and the four specific dynamic visual attention models. Section 3
provides the methodology for the model evaluation and Section 4, the descrip-
tion and results of the experiments. Finally, a conclusion is given in Section 5.

2 DYNAMIC VISUAL ATTENTION MODELS

Section 2.1 provides a description of the computation of the static map. In
Section 2.2, two pure motion models are presented. Finally, Section 2.3 pro-
vides a description of the different dynamic models considered for computing
the saliency map of dynamic sequences.

2.1 Static map

The saliency-based model of visual attention [3] is based on three major princi-
ples: visual attention acts on a multi-featured input; local saliency is influenced
by the surrounding context; the saliency is represented on a scalar saliency map.
In this article, three cues namely, color, intensity and orientation are used and
the cues stem from seven features. The different steps of the model are briefly
described here (more details are available in [11]):
1) Seven features are extracted from the scene by computing the so-called fea-
tures from an RGB image color: one intensity feature; two chromatic features
based on the two color opponency blue-yellow and red-green; four local orienta-
tion features according to the angles θε{0◦, 45◦, 90◦, 135◦}.
2) Each feature map is transformed in its conspicuity map. Each conspicuity
map highlights the parts of the scene that strongly differ, according to a specific
feature, from their surrounding. This is usually achieved by using a multiscale
center-surround-mechanism [12].
3) The seven features are then grouped, according to their nature into three
conspicuity cues of intensity Cint, color Ccolor and orientation Corient.
4) Finally, the cue conspicuity maps are integrated together, in a competitive
way, into the saliency map S. Formally the static saliency map is defined as:

Sstatic = N (Ccolor) +N (Cint) +N (Corient) (1)
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where N () is a normalization function that simulates intra-map competition
and inter-map competition in the map integration process. Several normaliza-
tion methods exist in the literature. [11] and [13] describe and compare linear
versus non-linear functions. A comparison with human vision concluded to the
superiority of the non-linear methods, which tend to suppress the low level noise
of the map, while promoting isolated high level responses. In this work, a non-
linear exponential normalization function defined in [11] is used.

2.2 Motion maps

A. The motion map

The general idea is to have a channel acting as a motion component in the
model. Among various possibilities for detecting motion, here we consider the
absolute value of the local speed computed with a gradient-based optical flow
method [14]. Based on the brightness conservation, the optical flow is computed
from the temporal and spatial derivatives of the image intensity. Formally, the
absolute value of normal velocity s is given by:

s(x, t) =
|It(x, t)|
‖∇I(x, t)‖ (2)

where ∇I refers to the spatial gradient and It is the temporal derivative of the
image intensity I. In order to deal with displacement of variable amplitude, a
multi-scale approach is used. The details of the implementation are given in [15].
Formally, the motion conspicuity is defined as:

Cmotion =
4∑

i=1

N (Mi) (3)

where Mi refers to the multi-scale motion map s at the scale i and N () is the
same normalization function as used in the static model. Finally, the motion
map is defined as:

Smotion = Cmotion (4)

B. The motion-conditioned map

Proposed in [15], the motion-conditioned map computes motion differently. Here,
the motion map defined in Eq. 4 is conditioned by the static map: only moving
objects compete for saliency and in a proportion equal to their static conspicuity.
Formally, the motion-conditioned map is defined as:

Scond(x) =
{

Sstatic(x) if Smotion(x) > Tε

0 otherwise
(5)

where Tε is a threshold, corresponding to the minimum value, for which motion
response is considered as significant.
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2.3 Dynamic maps

A. The competitive scheme
Given a set of feature maps F to be integrated, the competitive scheme

combines all the maps additively. The resulting map S contains a contribution
of each feature. Formally, the competitive scheme is defined as:

S =
n∑

i=1

N (Fi) (6)

where Fi refers to one of the n feature maps and N () is the same normalization
function as defined in Eq.1. We notice that the considered scheme is identical to
the feature integration process used in the static model.

In this paper, two models using this competitive scheme are considered. The
first model integrates the motion in the static model as an additional cue. All the
cues (color, intensity, orientation and motion) are integrated into the saliency
map in a competitive way [8] [16]. The saliency map of the model 1, named the
cue competition model is thus defined as:

Model 1 : Scuecomp = N (Ccolor) +N (Cint) +N (Corient) +N (Cmotion) (7)

The second model, proposed in [15], integrates motion at a higher level. The
motion map is directly combined to the static map in a competitive scheme.
Formally, the saliency of model 2, the static&dynamic model, is defined as:

Model 2 : Sstatic&dyn = N (Sstatic) +N (Smotion) (8)

Compared to the first model, this results to a higher motion contribution in the
saliency map.

B. The motion priority scheme

Proposed in [9], the motion priority scheme combines the static map and motion
map by prioritizing motion: in presence of any motion, the saliency map is com-
puted by suppressing the static channels, the motion has the priority. In absence
of any motion, the saliency map is computed by the classical static model. This
integration scheme acts like a switch between the static and motion map. The
third model, the motion priority model is defined as:

Model 3 : Spriority1 =
{

Smotion if maxx(Smotion(x)) > Tε

Sstatic otherwise
(9)

Accordingly, the saliency map Spriority1 corresponds either to the motion map
Smotion if its global maximum value is higher than the threshold Tε, or otherwise,
it corresponds to the static map Sstatic.

The fourth model combines in a similar way the static map with the motion-
conditioned map of Eq. 5. The saliency map according to model 4, the motion-
conditioned priority model is defined as:

Model 4 : Spriority2 =
{

Scond if maxx(Smotion(x)) > Tε

Sstatic otherwise
(10)
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Accordingly, the saliency map Spriority2 corresponds either to the motion-conditioned
map Scond if the global maximum value of Smotion is higher than the threshold
Tε, or otherwise, it corresponds to the static map Sstatic.

3 MODEL EVALUATION

This section describes the method used to evaluate the performance of the models
of visual attention in comparison with human vision. The basic idea consists
in measuring, for a given set of video sequences, the correspondences between
the computed saliency sequences and the corresponding human eye movement
patterns.

Video sequences are used as visual source. On one hand, the computer op-
erates according to a selected model and produces saliency maps for each video
frame and therefore a saliency sequence corresponding to a video source se-
quence. On the other hand, the same video sequence is shown to human sub-
jects while recording their eye movements. The data are segmented into saccade,
blink, fixation and smooth-pursuit periods. Then blink and saccade periods are
discarded in order to take into account only fixations and smooth-pursuits in
the analysis [16]. We end up with a set of fixation and pursuit points {x(t)}.

For the purpose of a qualitative comparison of human and computer results,
we present next a means to transform the set {x(t)} into a so called human
saliency map that provides the possibility to visually compare the computer
saliency and human saliency sequences.

For the purpose of a quantitative comparison, we present next the definition
of a score that provide a quantitative measure of the similarity between computer
saliency and the set {x(t)}.

3.1 Human saliency

The human saliency map H(x, t) is computed under the assumption that it is an
integral of gaussian point spread functions h(xk) sampled in time and space at
the locations of the fixation and pursuit points {x(t)}. The width of the gaussian
is chosen to approximate the size of the fovea. Formally, the human saliency map
H(x, t) computed at a given frame t is:

Shuman = H(x, t) =
1
K

K∑

k=1

h(xk, t) (11)

where xk refers to the position of one of the K fixation and pursuit points that
occur at the time t.

3.2 Score

For quantifying the correspondence of human eye movement patterns with a
given saliency map, an analysis of the saliency value located at the human ob-
servation points is performed. Several approaches are defined in [8] and [16]. In
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this article, a similarity score s, defined in [11], is computed for evaluating the
suitability of the seven considered models. The score s quantifies the similarity
of a given saliency map S with respect to a set of fixation and pursuit points
{x(t)}.

The idea is to define the score as the difference of average saliency sfix

obtained when sampling the saliency map S at the fixation and pursuit points
with respect to the average s obtained by a random sampling of S. In addition,
the score used here is normalized and thus independent of the scale of the saliency
map. Formally, the score s is thus defined as:

s =
sfix − s

s
, with sfix =

1
K

K∑

k=1

S(xk) (12)

A high score s means high saliency values at the fixation and pursuit points,
in comparison to the average value of the saliency map S. The score represents
simply the ratio sfix

s shifted with an offset of -1.
The quantitative evaluation is performed as follows: for each model, for each

sequence and for each frame t, a score s(t) is computed by comparing the saliency
map at the frame t with respect to the fixations and pursuits that occur at that
time.

4 EXPERIMENTS

4.1 Video sequences

The set of video clips is composed of 14 short synthetic video sequences, con-
taining either static objects, moving objects or both. In the experiments, various
scenarios are used, alternating moving situations and still situations, combining
high color-contrasted, low color-contrasted, moving and standing spots. The du-
ration of the sequences is 10 seconds.

4.2 Eye Movement Recording

Eye movements were recorded using an infrared-video-based eye tracker (HiS-
peedTM, SensoMotoric Instruments GmbH, Teltow, Germany, 240Hz), tracking
the pupil and the corneal reflection to compensate the head movements. 10 hu-
man subjects observed the video sequences on a 20” color monitor with a refresh
rate of 60 Hz. The viewing distance was 71.5 cm and the video sequences were
displayed full screen, resulting to a visual angle of approximately 32◦ by 24◦.
Each synthetic sequence was displayed randomly in alternation with a real video
sequence in order to keep a close attention of the subject throughout the viewing
session. Each video sequence lasted 10 seconds and was preceded by a central
fixation cross for 2 seconds. The instruction given to the subjects was ”just look
at the screen and relax”.
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(A) Original

(B) Human observations

(C) Shuman

1. Scuecomp

2. Sstatic&dyn

3. Spriority1

4. Spriority2

Figure 1a: sequence 1, frame #46: all spots stand still.

(A) Original

(B) Human observations

(C) Shuman

1. Scuecomp

2. Sstatic&dyn

3. Spriority1

4. Spriority2

Figure 1b: sequence 1, frame #70: one spot is moving, the other ones stand still.

Fig. 1. A comparison of the human saliency map issued from the human recording
with the computer saliency maps issued from the four considered models (1. to 4.). (A)
the original frame, (B) the human observations and (C) the human saliency map.

4.3 Qualitative Evaluation

Figure 1 shows an example of qualitative evaluation of the four considered mod-
els. Here, the model comparison is performed for sequence 1 in two situations: all
the spots stand still (frame #46); one spot is moving while the other ones stand
still (frame #70). The human saliency (C) is compared with the four models for
both situations. In the first situation, the subjects spread their attention on the
static spots. All the models have the same saliency map and are equivalent in
term of similarity to the human saliency. In the second situation, all the subjects
concentrate their attention on the moving spot. Here, the models based on the
motion priority schemes are more suitable for predicting the human attention,
compared to the competitive-based models.

In the frame of the experiments, we observe over all the sequences that the
human saliency map highlights most of the time moving objects. Thus we can
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state that most human subjects concentrate their attention on moving stimuli.
In other word, motion stimuli have a pop-out effect that strongly attracts the
human attention. This is an explanation why the motion priority is more suitable,
compared to a competitive scheme.

4.4 Quantitative Evaluation

The next paragraph discusses the overall model performances based on the set of
14 sequences. For each sequence, an average score is computed for each model.
Thus, 14 scores represent the performance of a given model. Figure 2 shows
the score repartition for each sequence for each model. Over all the sequences,
models 3 and 4 have higher scores compared to the models 1 and 2. This results
to the superiority of the motion priority scheme compared to the competitive
scheme in the dynamic visual attention model.
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Fig. 2. The score repartion evaluated for 14 synthetic video sequences for the four
considered models.

Table 1 shows an overview of the model performances. First we notice that
all scores are quite high. For example, the average score for the cue competition
model is 7.16, which means that the average saliency value sampled on the
human fixations is 8.16 times higher than the average saliency value sampled
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randomly. Finally, a comparison of the average scores confirms the superiority
of the motion priority scheme.

Table 1. Performance evaluation for the four considered models: an average score for
each model is computed from the 14 sequences

visual attention models Mean Score Standard Deviation

1. cue competition model 7.16 2.54

2. static&dynamic model 9.01 3.29

3. motion priority 1 model 12.24 5.44

4. motion priority 2 model 19.47 9.44

To summarize, the experimental qualitative and quantitative evaluation show
that the motion priority scheme is more suitable than the competitive scheme in
the architecture of dynamic visual attention models. The motion priority scheme
acts like a switch: in presence of any motion, the saliency map is computed by
suppressing the static channels, the motion has the priority. In absence of any
motion, the saliency map is computed as the static model.

During the experiments, most human subjects concentrate their attention
on moving stimuli, which induce a pop-out effect that strongly attracts their
attention. This is an explanation of the higher suitability of the motion prior-
ity scheme, compared to the competitive scheme. We should keep in mind a
limitation: the motion priority scheme does not allow to detect a high salient
static object in presence of motion, while the competitive scheme allows it. We
notice also that the results are limited to the analysis of synthetic scenes. Future
research will extend the analysis to natural scenes.

5 CONCLUSION

This article compared two alternative schemes of map integration for combining
static and motion features in the field of a computer visual attention model for
dynamic scenes. Four models, belonging to the considered integration schemes,
are compared by measuring their respective performance with respect to the eye
movement patterns of human subjects, while viewing simple synthetic sequences.

In the context of the simple synthetic scenarios provided, this comparative
study shows that the motion priority scheme is more suitable than the com-
petitive scheme, for integrating motion in visual attention. Both qualitative and
quantitative evaluations show the superiority of the motion priority scheme. The
motion priority scheme acts like a switch: in presence of any motion, the saliency
map is computed by suppressing the static channels, the motion has the prior-
ity. In absence of any motion, the saliency map is computed as the static model.
An interpretation in human vision suggests that attentional behavior is best
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explained by the motion priority scheme. Future research will investigate this
interpretation in the general context of real natural scenes.
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