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Abstract. Calibration of the pinhole camera model has a well–established
theory, especially in the presence of a known calibration object. Unfortu-
nately, in wide-base multi–camera setups, it is hard to create a calibration
object, which is visible by all the cameras simultaneously. This results in
the fact that conventional calibration methods do not scale well. Using
well-known algorithms, we developed a streamlined calibration method,
which is able to calibrate multi–camera setups only with the help of a pla-
nar calibration object. The object does not have to be observed by at the
same time by all the cameras involved in the calibration. Our algorithm
breaks down the calibration into four consecutive steps: feature extrac-
tion, distortion correction, intrinsic and finally extrinsic calibration. We
also made the implementation of the presented method available from
our website.

1 Introduction

Calibration of the pinhole camera model has a well-established theory [1]: given
a number of 3D–2D correspondences the free parameters of the desired pinhole-
model variant (having/not having skew, known aspect ratio, ...) can be esti-
mated. Although a lot of research have been carried out to exploit properties of
the observed scene for calibration, because of their higher accuracy, the corre-
spondences still tend to stem from image(s) of calibration objects. 3D calibration
objects have the advantage that one image taken by the camera suffices for cali-
bration, 2D objects used by homography-based methods, however, are easier to
manufacture and handle. Multiple cameras can be easily calibrated in a com-
mon reference frame as long as they are able to observe the calibration object
simultaneously. This is not an issue if the cameras has approximately the same
point of view (near-baseline case), but problems arise as the point of views get
farther away from each other and conventional methods do not scale well (see
Figure 1).

For systems with pre-known static camera setup appropriate calibration ob-
jects can be designed and calibration can be carried out automatically. In wide-
base multiview settings the complexity of the calibration objects (and possible
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(a) (b) (c)

Fig. 1. Typical 3D (a) and 2D (b) calibration objects and the model of a 3D display
(c) with 5 cameras (red circles) to track the users actions. Even for this small 5 camera
setup the straightforward use of any of the calibration objects is hindered by the fact
that they cannot be seen by all the cameras at the same time.

additional hardware, e.g. a LED-matrix controller) depends inherently on the
camera setup. In multiview human tracking methods for medium to large vol-
umes with three or more cameras (typical in ‘intelligent rooms’ or AR/VR) it
is often not feasible or even possible to construct calibration objects which are
observable by all cameras. Another drawback of such custom calibration objects
is that change of the camera setup might render the object obsolete.

2 Motivation

Connected to our research in Computer Vision based Human-Computer Inter-
action (HCI) (more specifically ‘Hand-Tracking’, see Figure 2), we several times
faced the problem that we had to be able to flexibly reposition our cameras.
During the development of vision-based interfaces camera placement and image
processing algorithm selection are intertwined. On the one hand, the available
positions of the cameras are usually constrained by the environment itself (free
instrumentation is not possible), on the other hand, success or failure of algo-
rithms might depend on the point of view. In order to be able to freely exper-
iment with camera-placement, processing algorithms and the tradeoffs between
them, one has to be able to try alternative camera placements. Recalibrating
the changed geometry of the cameras is not necessarily restricted only to the
reestimation of the extrinsic parameters (position and orientation), as different
distances to the observed scene might require changed zoomings, which modi-
fies the intrinsic parameters (focal length, distortion coefficients, etc.). Another
source of need for a new calibration can be the change of the camera(s) itself: in
desktop oriented HCI webcams that are ubiquitous to the user are preferred to
extra instrumentation, so it should be easy to experiment with different cameras.

Given these requirements, one faces the problem of frequent recalibration.
Thus, we were interested in calibration methods that are robust and can be
carried out with minimal human intervention and preferably in a small amount
of time. In order to track the user’s movements we have to simultaneously grab
from several cameras, so synchronized imaging during calibration does not pose
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a problem for us. This is not necessarily the case in other camera setups, for
example one-shot digital camera networks.

(a) (b)

Fig. 2. Two hand-tracking systems developed at our department, cameras are marked
with red circles. The first one (a) utilizes skin-color detection to segment the users
hand, allowing for a relatively uncontrolled background and an orthogonal setup of the
cameras. The second (b) uses a background subtraction for hand-segmentation in near
infrared illumination. It possible to operate in darkened environments (often needed
for 3D displays), but requires a homogenous dark background and the segmentation
algorithm itself restricts the placement of the cameras above the tracked area.

3 Calibration Method

It was obvious that we cannot use calibration rigs similar to the one depicted in
Figure. 1(a). Manufacturing of L-shaped rigs with exact angles is tedious and it
is not possible to change the size of such objects.

The development in auto-calibration methods [1] makes the question valid:
do we need a calibration object at all? Auto-calibration requires only a number
of correspondences between the images. Utilizing RANSAC methods outliers are
also tolerable. If the cameras have a near baseline setup and the background (at
least during calibration) is static and has enough features, obtaining the required
correspondences is a fairly straightforward task. The wide baseline matching
problem is much harder and in the case of a homogenous observed scene (see
e.g. Figure 2(b)) getting the matches automatically is impossible.

A very elegant way to generate the needed correspondences using a simple
laser pointer as a minimalistic ”calibration object” was reported in [3] and a
similar method is utilized by the VICON motion capture system for calibration
[4], albeit with the use of highly reflective spheres instead of a laser pointer. A
drawback of auto-calibration methods is that at least 3 cameras are needed for
them to work. Even in this case all the 3 cameras must share the same intrinsic
parameters, which clearly does not hold if different kinds of cameras are used.
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To solve the calibration problem in general, at least 8 cameras are required.
Another, smaller drawback of these methods is that collecting of the calibration
points assumes at least some amount of control of the environment (e.g. to be
able to darken the area), which is not always feasible (outdoor environments or
exhibition booths).

Homography based calibration methods like [2],[5] utilize planar patterns to
identify calibration points in the scene. As a consequnce, they offer a tradeoff
between point-like reference features and 3D calibration rigs. Using a planar
object has several advantages:

– even one camera can be fully calibrated
– the extrinsic parameters can be estimated in the pattern local coordinate

system
– it is easy to modify the size of a pattern by printing one out and attaching

it to planar surface
– the background behind the object is occluded, so the role played by the

environment is reduced

3.1 Algorithm Overview

The main steps of our algorithm are depicted in Figure 3(a). Similarly to [3] and
[2], we make the assumption that we are able to grab from all of the cameras
while we acquire calibration data. During data acquisition the user has to show
a planar pattern (see Figure 3(b)) for the cameras; the pattern, however, does
not have to be seen by all the cameras simultaneously. We put some restrictions
on the dataset in order to be able to calibrate, these, however, are not limiting
in practice for a large class of multicamera systems (see section 5).

In first stage of the algorithm we calibrate for the lens distortion parameters.
After they are identified, the dataset is undistorted to be fit for the calibration of
the linear pinhole model. The second stage is self-calibration, identifying intrinsic
parameters for every camera independently. During the last stage, we compute
the extrinsic calibration of the cameras. We explicitly take triangulation error
into account, thus making the calibration results well suited for shape from
silhouettes methods. Although the need for a planar object makes our method
slightly more inconvenient for the user than [3], it allows us to decouple the full
pinhole calibration into 3 subproblems with smaller dimensionality. This also
has the benefit that the first 2 stages along with reference point extraction from
calibration images can be parallelized.

3.2 Correcting Radial Distorion

In order to decouple the distortion estimation from some kind of structure esti-
mation, like usually done during bundle adjustment, we use only the information
that points in the calibration pattern should line on a line. We exploit the hori-
zontal, vertical and 45o lines of the pattern. From the possible suitable methods
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Fig. 3. (a) algorithm overview, (b) the calibration pattern: the green dots are the
reference points; the two extra black squares in the lower right corner are used to
identify the origin (red dot). A pattern like this (apart from finding the origin) can be
easily detected by the Intel OpenCV library [6].

like [8], [9], [7], we choose to implement one of variants without homography
estimation from [7]. The distortion in modeled in the usual way:

xd = xu(1 + κ1r
2
u + κ2r

4
u)

yd = yu(1 + κ1r
2
u + κ2r

4
u)

ru = ‖xu − u, yu − v‖
where xd, yd are the measurable image points, xu, yu are the linearly projected
points, κ1, κ2 are the distortion coefficients and (u, v) is the distortion center.
The parameters to estimate are [u, v, κ1, κ2]. Please note that (u, v) is not the
principal point, as it is not known at this stage, but an independently determined
distortion center.

The method estimates the true distortion of lenses, not a compensating dis-
tortion as it is usually done. Although computationally a bit more involved (there
is no analitical inverse of the radial distortion function), it has the advantage
that the undistorted images do not lose pixel information. A sample distorted
and undistorted image made by a wide angle lense is shown in Figure 4.

4 Internal Calibration

The goal of the internal calibration is to estimate the parameters of the intrinsic
matrix of the camera:

K =

α 0 u0

0 β v0

0 0 1
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(a) (b)

Fig. 4. Original (a) and undistorted image of made by a wide angle lense. Please note
than the barrel distortion of the lense is estimated instead of a compensating pincushion
distortion.

where α and β are the scaling factors of along the image main axes and (u0, v0)
denotes the principal point. The method presented in [10] is used for self cali-
bration. To carry out this algorithm, the fundamental matrices corresponding to
the image pairs are needed, they were computed using the normalized 8-point
algorithm [11]. Similarly to the radial distortion case, we tried to estimate only
the parameters in question.

After computing the external parameters and reprojecting the points, how-
ever, we found that the reprojection error was too high. This indicated that the
computed K matrix had to be refined. In order to get a better estimate of the
intrinsic matrix, we iteratively reestimated its 4 parameters by minimizing the
reprojection error, computing the also the external paramters in each iteration
step. This indeed resulted in a great improvement, as can be seen in figure 5.

5 External Calibration

Planar objects has one disadvatage that point like features do not have: in wide
baseline case, the planar pattern is most probably not visible in all cameras,
while a point does not cause occlusions. The could be partially circumvented
by using both sides of the plane, but these leads to manufacturing problems:
the pattern on the two sides must have a known alignment with respect to each
other. Fortunately, this problem can be solved by propagating the postion of the
world points through the already computed camera calibrations.

Let G be the graph which describes the connectedness of the the cameras:
two nodes representing cameras has an edge between them if they have at least
one mutual view of the calibration object. As long as this graph is connected,
the extrinsic parameters of the cameras can be computed in a common frame.
The idea is depicted in 6.
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(a) (b)

Fig. 5. Reprojection error before (a) and after (b) the reestimation of the intrinsic
parameters. The blue dots are the undistorted calibration points, the green ones are
the reprojected ones.

Another, more subtle problem connected to planar patterns and extrinsic
calibration is depicted in Figure 7(a). Even if the planar pattern is visible by
all the cameras in question, but occupies only a smaller portion of the image,
its use for estimating the external parameters does take into account the rays
which pass through the pattern and introduces triangulation errors along the
non controlled rays. One solution would be to use a larger planar object, but
this would make the use of the object inconvenient if not prohibitive.

As we collect a large set of images of the planar pattern, we propose to
alleviate this problem by using these extra images (not necessarily observed by all
the cameras) and taking into account triangulation error of the reference points.
As their position is unknown only relative information can be used (distances
and angles in the plane) and the fact that the points must lie on a plane, see
Figure 7(b).

6 Conclusions

We have presented an easy-to-use method for the complete calibration of a multi-
camera network with minimal user interaction. Our method is able to automat-
ically generate full calibration for all cameras from sparse information and does
not require any special hardware.

The advantages of our method can be summarised as follows: enhanced sta-
bility and flexibility due to the independent calibration steps, full calibration
for two up to any number of cameras and due to the use of a planar pattern,
indifference to environmental conditions.

The implementation of the presented method along with its source code is
available under the GPL license from our website (‘http://cg.cs.uni-bonn.de/project-
pages/camcal/’) along with the most current version of this paper.
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Fig. 6. The position of the reference points can be propagated from C0 to C2 through
C1 (a) (red indicates the view frustum of the cameras). In a larger camera network, this
propagation works for all the cameras as long as graph G is connected. The concept of
G is illustrated in (b), the rows of the matrix on the left represent the synchronously
captured frames, the filled squares mean that the calibration pattern was found in the
image of the camera.
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Fig. 7. The problem of estimating extrinsic parameters from a planar pattern, which
does occupy only a part of the view-frustum of the cameras (a), proposed soloution (b):
the known relative position of the planar points can be used to control the otherwise
unoptimized viewing rays.
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