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Abstract. Contrary to many standard vision systems which proceed in
a cascaded feedforward manner, imposing a fixed order in the sequence
of visual operations like detection preceding segmentation and classifica-
tion, we develop here the idea of a vision system that flexibly controls
the order and accessibility of visual processes during operation. Vision
is hereby understood as the dynamic process of adaptation of visual pa-
rameters and modules as a function of underlying goals or intentions.
This perspective requires a specific architectural organization, since vi-
sion is then a continuous balance between the sensory stimulation and
internally generated information. In this paper we present the concept
and the necessary main ingredients and show first steps towards the im-
plementation of a real-time intentional vision system.

1 Motivation

The selective choice of sensory information and the corresponding tuning of sen-
sor parameters, i.e., the focusing of visual processing resources, is a fundamental
problem of any artificial or biological vision system with at least a claim for some
minimal generality. Such focusing capabilities largely make up for the flexibility
of biological visions system that, depending on the (visual) task in question,
the context of already acquired as well as prior information and the available
processing resources, may deploy very differently even for identical sensory input.

The idea is that different visual tasks, motivated by internal goals, trigger
different visual processes, and that these processes have to be organized in a
systematic way because there is simply not enough capacity otherwise. Such a
system would therefore continuously have to modulate and adapt itself, organize
the cooccurrence or their temporal order of visual operations, and monitor their
success. The processes referred here are mainly seen as internal operations, such
as e.g. the selective enhancement of competition, the dynamic adjustment of filter
parameters or the concentration on special feature channels, like edges, motion,
color, etc. The means by which this could occur is via attention, combining
top-down signals that provide expectations and measurement resp. confirmation
requests with bottom-up signals that provide sensory-near measurements.

To the contrary, in the first attempts to outline a computational theory
of vision, Marr stated that the goal of e.g. a computer vision system should
be a “description of the three-dimensional world in terms of surfaces and ob-
jects present and their physical properties and spatial relationships” [8]. This
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reconstruction/recovery paradigm did not make any explicit reference to inter-
nal modulation and focusing processes so that it suggests a task-independent
passive observer. For underconstrained real-world vision processes, it was soon
clear that an accurate description of the 3D-surrounding is largely impossible.
Furthermore, the claim of a detailed internal world representation does not take
into account system processing constraints, like e.g. those showing up when sev-
eral competing visual object become involved and attention has to concentrated
on one of them. All this together suggests that a consistent maintenance over
time of such a accurate internal representation is computationally unfeasible.

As a consequence, behaviorist paradigms appeared, which concentrate on
“visual abilities which are tied to specific behaviors and which access the scene
directly without intervening representations”. One of them is active vision (see
e.g. [3]), a term that is used for systems that control the image acquisition pro-
cess e.g. by actively modulating camera parameters like gaze direction, focus or
vergence in a task-dependent manner. Along a similar line, purposive vision ([2])
regards vision processes always in combination with the context of some tasks
that should be fulfilled. Common to both approaches is that they have concen-
trated on behaviors and actions that are directly observable from outside, and
in how visual information can be extracted that supports particular behaviors.

In the intentional vision framework we present here, visual cognition is un-
derstood as a goal-driven mediation between an internal representation and the
incoming sensory stimulation. The mediating control processes thus serve to
gather visual information that could be potentially used for guiding overt be-
haviors, (without necessarily being tied to the behaviors). In fact, we interpret
any internal modulation and attentional focusing as a (virtual) action. 1 The ba-
sic assumption is that, from a task-driven perspective, there is simply not enough
processing capacity to cover all the different ways to operate on the visual in-
put in a hard-wired manner, so that a vision system has to flexibly organize
its internal visual processing during operation and this organization has to be
controlled by the (visual) intentions of the system. The tasks and intentions we
mention here are supposed to be of intermediate level, but still relatively close
to the sensory domain, like e.g. “pick an interesting moving object in the visual
scene and keep its coordinates up-to-date”, “compare the feature composition of
two objects” or “track an object, use motion segmentation to separate it from
the background”.

In the next two sections, we will describe our first steps towards building an
intentional vision system which uses an intermediate level of representation of
the visual world that incorporates task and intention based components. We will
elaborate the necessary ingredients that such a system should have, and then
focus on a few visual subtasks that we have chosen for a first implementation
basis. In a further section, we describe the model and results gained from the
implementation of these subtasks.

1 We even explicitly disregard any overt actions like gaze or head orienting here, since
we think that the more interesting aspects of visual processing appear without the
need to concentrate on the hardware specificities of sensory devices.
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2 Ingredients for intentional vision
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Fig. 1. Architecture overview of
the intentional framework as tar-
geted in this work. After a pre-
processing step which may not
be controlled by the task via at-
tention, the visual routines are
all driven as a combination of
bottom-up and top-down factors
(more sensory-driven routines are
displayed on the left side, more
attention-driven routines on the
right). A strong parallelism of
the visual routines avoids any
fixed order of operations, rather,
the scene representation combines
and sequentializes the routines in
a memory- and task-dependent
way, controlling and routing the
information flow.

Contrary to systems with strict hierarchical representational structures a la
Marr, an intentional vision system as devised here, has hardly any really “pas-
sive” sensing components besides perhaps some rudimentary preprocessing that
can be decoupled from the rest of the system. All the components that contribute
to the process of acquisition of visual information are active in that they are se-
lectively modulated, controlled and triggered resp. activated/deactivated. The
idea is that e.g. visual object classification is not a result of a fixed preprocessing-
segmentation-classification “path”. Instead, we break up the fixed sequence and
consider segmentation, masking and classification as possibly interdependent,
but largely separate visual processes with each delivering its result to a higher-
level representation, whose role is to drive them in the right order until the
overall task is complete. This introduces a special kind of flexibility into the sys-
tem, since for different contexts the higher level representation could decide to
modulate the visual processes differently, e.g. by using a segmentation based on
different cues, or to use a combined mask that includes some prior information
about the object in question, etc.

The processes needed for an intentional vision system can be coarsely sys-
tematized into the visual routines responsible for providing measurements about
the visual scene, visual modulation processes that allow for a task-dependent
specialization of the visual routines, providing the capability to incorporate top-
down assumptions, visual control mechanisms that decide on the visual task
decomposition, driving the visual routines in an appropriate way, and the visual
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representation that compresses the short-term memory of visual measurements
delivered by the visual routines and the memory of the attended items.

The active character of all these processes has to be considered already in
the design process of the system. This means that we have to provide means so
that other visual routines and the acquired visual knowledge can modulate the
behavior of a visual routine in a systematic way, since every routine is supposed
to be used in more than a single configuration resp. more than a single visual task
(usually composed of a concatenation of several visual routines). In addition, we
seek for visual routines that are general enough to be used for multiple visual
tasks and that can appropriately adapt their operation to a different visual
context. From the technical side, we have to provide the interfaces so that the
different visual routines can communicate with each other and with the visual
short-term memory.

Figure 1 shows the main parts of an intentional vision system. After a pre-
processing stage which may be common to all visual routines but not actively
controlled by the visual task(s), there is a plethora of visual routines subserv-
ing different purposes, with rather direct connection to the visual short-term
memory, representation and control components. The visual routines are neither
exclusively dominated by bottom-up or top-down processing, rather they span
a broad spectrum, with some of them being mainly sensory-driven (Fig. 1, left
side) and only broad parameter modulation on a long time scale by the visual
context, some being modulated on a short timescale by the visual short-term
memory (middle), and some which are very object-, location- or feature-specific,
depending on top-down request for operation (right side).

3 Specific visual routines

In this section we shortly outline the visual routines that we are using for first
implementation tests. From a systematic point of view, we have used four broader
classes of visual routines (in fact there may be many more with several distinct
processing pathways for extraction of different properties of the visual stimulus,
compare this with biologically inspired models which usually assume a “what”
and a “where” pathway): Visual routines for triggering point hypotheses about
item location in the visual field, for the dynamic prediction and confirmation of
the items position over time, for the extraction of area information and figure-

background segmentation, and for area- and segmentation-based measurements.

3.1 Hypothesis triggerering via tunable saliency

One of the main visual subtasks in a visual system is to discover and localize
potentially interesting parts of a visual scene. Such parts may serve as initial
hypotheses for more detailed visual inspections, e.g. to identify “objects”. 2

2 With objects, we denote here not necessarily the visual appearance of physical ob-
jects present in the real world, but rather things of the visual scene that deserve a spe-
cial internal representation because they can be characterized by a low-dimensional
state descriptor like e.g. position, size and classification label.
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Usually, the argument is that the selection of potentially interesting locations of a
scene should be sparse, i.e., extracting only few interest points as compared to the
input image resolution, and fast, e.g. by using simple, parallelizable operators.
Computational costs of subsequently analyzing stages like object detection and
recognition could then be kept at a more manageable level.

In our system, the selection of interesting locations is accomplished by a
series of saliency-computing modules, which calculate spatiotemporal contrasts
at various scales for different visual cues like motion, color and structure (see
[7, 6] for a review). Circular spatial center-surround contrasts reveal locations
of the visual input where a visual cue deviates from average. After the center-
surround calculations for each visual cue, neural field relaxation dynamics (see
e.g. [4]) provide a regularization of the results so that the saliency results from
the different cues can be integrated into a single spatial saliency map from which
interesting points are selected.

Although saliency is usually understood as being low-level and working mainly
in a feedforward manner, it can be guided and modulated to a large extent by
top-down factors (see e.g. [13, 9] for recent articles on this topic). In our system,
top-down guidance enters at various levels. On the most general level, the contri-
bution of each cue to the collector saliency map is weighted by a gain factor that
is controlled by the scene representation. By this way, depending on the task
context, different desired visual properties can be emphasized (e.g., for dynam-
ical scenes, concentrate on salient points determined by motion). In addition,
for each saliency cue spatial modulation maps are provided, which can be used
to bias spatial areas of the visual input. In such a way we can e.g. specify a
target search that uses color contrast for the upper and motion contrast for the
lower half of the input. Furthermore, each saliency cue is composed of several
“feature” subchannels, which can again be weighted using a gain factor. In such
a way, the system can focus on selected features of a saliency cue, e.g. prefer-
ring horizontal over vertical motion for the motion saliency contribution. Last
but not least, we are using a number of saliency contributions with cues that
are completely object- and context-specific (“target color cue”, “target depth
cue”, ...), by calculating the difference of the sensory input from an expected
cue configuration, such as a specific hue and saturation.

After the calculation of the collector saliency map, the extracted points of
interest are compared with the visual short-term memory to see if they corre-
spond to already stored “object hypotheses”. If not, they are stored in memory
together with their cue activities and current cue weighting factors, so that the
knowledge about which cues triggered a hypothesis is retained. Such knowledge
can then be used in later stages to direct a top-down driven search for the ob-
ject if its location has become uncertain, or to specify cues for e.g. segmentation
processes.

Summarizing, the results from the dynamically tunable saliency serve as a
basis for the generation of entry-level target location hypotheses in short-term
visual memory. These hypotheses are then used for other search and refinement
processes that recruit further visual routines.
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3.2 Multitarget tracking

We also implemented a view-based, 2D Bayesian multicue tracker ([1]) to be
able to lock and maintain attention on an object or a part of a visual scene
over time. This is important for an intentional vision system with an internal
object representation, since it allows to dynamically focus and do processing on
the object. E.g., while tracking an object we can call classifier routines from
time-to-time and check the objects identity, or use visual routines that require
an integration over time, etc.

Design issues here were that we do not have to learn or train the tracker
specifically for each object. Since we want the system to be sufficiently general
to work with as many types of objects as possible, and since the tracker has to be
able to get rapidly initialized by hypotheses provided either by the saliency se-
lection (3.1) or by the visual memory, we used an appearance-based tracker that
extracts multicue templates using a coarse initial hypothesis about the objects
position and extension. The tracker itself is based on the assumption of tempo-
ral continuity in one or several of the cues. For contexts in which the tracked
objects undergo considerable variations in their visual aspect (e.g., changes in
color, shading, reflection and form), such a multicue approach is beneficial in
terms of robustness and flexibility.

In our system, we included several tracker working in parallel so that multiple
targets can be tracked independently and simultaneously. The tracked objects are
represented in visual memory together with their positions and further tracking
parameters (templates, cues). Similarly to the saliency-driven hypotheses, they
provide a target location measurement, with the difference that they are very
object-specific and that their state (position, velocity) and their link to the
sensory input is continously updated.

3.3 Attention-mediated segmentation

In addition to the triggering of new hypotheses via saliency (Sec. 3.1) and the
attending of objects via multicue tracker (Sec. 3.2) which both provide spatial
point information (i.e., where an object is located), it is necessary to also get
surface-based information, as e.g. provided by a figure-ground segregation pro-
cess. Surface-based information available in the visual memory can be used by
several complementary visual routines, e.g. using it as a mask for an object classi-
fier, or by computing mask-based measurements on cues to calculate constrained
statistics such as average color, structure or motion.

As in the tracking routines, we want segmentation to be applicable using
multiple cues which can be weighted dynamically and selectively using top-down
signals from the scene memory and the task context. Furthermore, since segmen-
tation implies computationally expensive iterative optimization algorithms we
have to cope with the resource constraints given by a dynamical scene.

In our system, object segmentation is based on level-set methods that sit on
back of the tracker routines. This implies that a subset of all tracked objects (with
the subset selection taking place in object memory) is chosen for segmentation,
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Fig. 2. Simulated system with 3
saliency routines (left side, struc-
ture, motion and color saliency),
tracker for multicue tracking, and
level-set based segmentation for
figure-ground segregation of the
tracked objects. The scene repre-
sentation acts as a “blackboard”
that combines the result of the
visual routines and organizes the
information flow. In our system,
the saliency routines trigger hy-
potheses which can then be com-
bined dynamically with their cor-
responding tracker and segmenta-
tion routines. An inhibition map
(top right) prevents the triggering
of new hypotheses at the locations
of tracked objects.

that the segmentation occurs iteratively over time, and that it is calculated along
with the moving objects, incorporating the predictions of the tracker.

Level-set methods for segmentation (see e.g. [11, 5, 10] for a survey) are based
on a functional that explicitly describes the segmentation criteria (cue specificity
and homogeneity of inside and outside areas, contour properties like length and
curvature, etc.) of the searched area. The functional optimization occurs by
deriving dynamics for a level-set surface function, which implicitly describes the
area and contour of the segmented region. The dynamics serve to modify the
level-set surface function, until a local optimum is found. Important for level-
set based segmentation is the choice of the initial conditions, which have to be
sufficiently close to the desired result.

To couple the segmentation with multicue tracking, we take the hypothetical
object position from a tracker and use it to create a surface prior as initial
condition, e.g. using a circular segmentation mask. Then we start to iterate the
level-set functional for a few steps. The cues on which the functional is calculated
can be extracted from the saliency cue information of the object that served to
trigger the tracking target. While the target is being tracked, we shift the level-set
surface along with the predictions of the tracked object, and iterate a few steps
at each position. This allows the system to preform a figure-ground segregation
under realistic timing constraints in a dynamic scene configuration.

4 Results

Here we show simulation results of a system that we set up as a proof-of-principle
for testing our ideas about intentional vision. We concentrated on dynamical
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scenes with appearing and disappearing objects, since then we have to deal with
instantiation and destruction of object hypotheses in visual short-term memory.

4.1 Saliency-tracking-segmentation loop

t

1

1

2

2

0

3

#attended
objects

Input SegmentationTrackingSelectionInhibitionSaliency

Fig. 3. Our system working on a synthetic image sequence. Time runs from top to
bottom. Shown are from left to right the original input, the contrast-based saliency,
the inhibition of attended objects, the newly selected objects for tracking, the tracker
estimations for the objects positions, and the segmentation masks for tracked objects.
New tracker are instantiated and “glued” onto objects depending on the already tracked
objects in short-term memory and the saliency of a new object appearing in the scene.

We coupled multiple saliency modules, target tracker and level-set segment-
ing routines with a visual short-term memory module in a dynamical way. The
memory module keeps track of saliency-triggered hypotheses, tracked objects
and the segmentation information. The lowest level object hypotheses are de-
livered by the saliency modules. A subset of these is dynamically selected for
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tracking; in the simulations, the decision is based on the motion contribution to
the saliency (corresponding e.g. to an implicit visual task “detect, follow, seg-
ment and classify all moving objects in the scene”). From the tracked objects,
again a subset is selected and attached to level-set-based segmentation algo-
rithms that calculate a mask that encompasses the object. Segmentation occurs
while the objects move and are being tracked, as explained in section 3.2.

We used saliency cues to extract motion, color and intensity-based struc-
ture contrast. The local motion estimations were extracted using a windowed,
normalized correlation-based probabilistic measurement technique according to
[12]. The local intensity-based structure was determined calculating the spatially
averaged structure tensor previous to the saliency contrast calculation at various
spatial scales. The structure tensor saliency turned out to be quantitatively as
good as but more effective than using various Gabor filters. The color saliency es-
timations were computed directly on the RGB channels of the input. In all three
cases, the “subfeatures” (motion estimation for the different velocities, structure
tensor components, RGB components) are regarded as collected into a feature
vector / feature histogram, and the saliency contrast measures the difference of
the spatially averaged feature vectors between center and surround.

The objects in visual memory interact with the triggering of new saliency-
based hypotheses using a spatial inhibition map that is build at each timestep
using the scene representation; see top right of figure 2. The inhibition map mod-
ulates the saliency results and suppresses saliency hypotheses at the locations of
tracked objects. In figure 3, the inhibition map is represented in the third col-
umn. The 4th column shows the selection of new targets (small circles on white
regions), which are scheduled for tracking at the subsequent timestep. The 5th
column shows the original input with the tracked objects (colored circles).

5 Outlook

We regard the system presented in section 4 as a first step towards an intentional
vision system. It is still very simple since it couples only a few visual routines via
bottom-up and top-down information flow, and many open questions remain.

One of the major points is the type of representation required at the visual
memory level. It is clear from our model that a detailed, complete and up-to-
date internal representation of the visual input according to Marr is not sensible,
since the system can only make use of a small portion of the data at any time.
In our case, the basic representation was tied to the type of data going from/to
the visual routines, comprising sensory blobs, tracked objects and segmentation
masks, together with their properties like activations, positions, velocities and
extensions. Nevertheless, a data-driven representation does not mean that there
is no room for more complex, hierarchical representations of e.g. real “objects”
which could act as collectors that have saliency blobs, tracker functionality and
segmentation masks as properties and extend them by additional information.

At the representational level, we made the distinction between items that are
only memorized (stored together with some time information, for possible active

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



10 Julian Eggert, Sven Rebhan and Edgar Koerner

access later in time) and those that are actively represented and maintained
using attention and top-down information flow. These attended items should be
those that are relevant for a certain visual task, since their number is severely
limited by processing constraints. This brings us to the next big open issue: How
to represent visual tasks within the intentional framework and how to select and
drive the optimal visual routines for a task on a need-to-know basis?

In an extension of the presented model, we are working on a large-scale im-
plementation with further saliency routines (measuring contrast in 3D depth,
combination of hue and saturation and saturation only), tracking capabilities
that include 3D information and enhanced histogram-based level-set segmenta-
tion. The scene representation is in this case a relational network that allows
to build hierarchical representations of “objects” starting from the measured
data, together with relationships and dependencies such as the inheritance of
properties, with target of the research being the representation of the procedu-
ral, task-dependent parts that allow to concentrate on the active and focused
processing of visual information as proposed by the intentional framework.
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