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Abstract.  

Here we present ongoing research in the application of symbolic argumentation to 

perception in general and vision in particular. Perception is treated as the combination 

of the possibly contradictory outputs of many specialized processes which 

communicate via a blackboard data structure. It is demonstrated that our design 

allows for bottom-up, horizontal and top-down information flow. Progress towards 

the analysis of unstructured scenes has been made. The principles involved have been 

explored experimentally and preliminary results are presented. 

1. Introduction and Related Work 

Research in mainstream computer vision has led to many successful and 

commercially exploitable systems for object recognition in carefully controlled 

environments, or where the set of objects to be recognised is small and known in 

advance. By contrast, the challenges of unconstrained object detection and 

recognition in uncontrolled, everyday environments are still very much open. These, 

however, have to be overcome before we can build the robots of the future that, for 

example, can assist an elderly person with the running of the household.  

Let us suppose that such a robot is pre-programmed with a large repertoire of visual 

Specialised Processes (SPs) that obtain the information required to carry out familiar 

tasks such as making a cup of tea. However, in everyday life it will also come across 

unfamiliar objects. It has to be able to detect those objects (a) to avoid bumping into 

them, (b) to assess their significance to determine whether to try to obtain further 

information about them and (c) to see whether they can be used. In our system a 

combination of Low-Level Processes (LLPs) and Knowledge Sources (KSs) analyse 

the scene to find these more generic objects.  

We claim that a system using a combination of SPs, which only return their often 

task-specific, but relatively reliable and accurate results occasionally, and LLPs and 

KSs, which return lower quality results more frequently, is capable of tackling the 

vision problem in an unstructured environment. By this we mean it can detect familiar 

and unfamiliar objects, returning an accurate description of the object and its pose in 

the former case and more general, spatial information in the latter.  

The main contribution of this work is the provision of an architecture in which the 

combination of many heterogeneous processes solves this complex vision problem. 
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The competition for access to a blackboard data structure [6] facilitates cooperation 

among these processes without the need for direct communication between them. The 

computational challenge can therefore be met using a parallel architecture, potentially 

by implementing parts of the system in programmable hardware.  

The expected payoff for combining a blackboard architecture with three-way 

information flow (bottom-up, horizontal and top-down) is a system for object 

detection that will be fast and robust in the presence of uncertain and incomplete data. 

The rationale for this expectation is that high-level inference allows many small 

pieces of unreliable evidence to be accumulated and combined into an accurate and 

complete overall picture. 

As a benchmark problem, the developed architecture has been tested using a stereo-

camera head with a fixed baseline observing unstructured scenes using single or 

continuous capture with the aim of detecting objects “touchable” for example by a 

humanoid robot. The system generates a high-level symbolic description of the spatial 

arrangement of the scene. It is further demonstrated that, as environmental conditions 

(such as the lighting) change and the contributions made by one KS are rendered 

useless, other KSs take over smoothly.  

Shanahan [8, 9] developed a theoretical, logic-based framework, which employed a 

combination of deduction and abduction to implement two-directional information 

flow in a cognitive vision system. Expanding this work, we use a blackboard 

architecture (BBA) [6] to allow us to integrate possibly contradictory information 

from a large number of image processing algorithms with the aid of symbolic and 

preferential reasoning [10]. Each of these processes can be considered an individual 

sensor, making this a sensor fusion task for “multi-modal” sensors tackled at decision 

level [4, 2]. The quality of each hypothesis formed is evaluated using preferential 

grouping [1] and argumentation theory [3]. We are not aware of any similar 

approaches to solving this vision problem. 

2. Information Processing 

In our system the tasks performed by Specialised Processes (SPs), Low-Level 

Processes (LLPs) and Knowledge Sources (KSs) can be grouped into 5 classes and 

many of them can be executed simultaneously. The direction of the information flow 

for each class is given in brackets: 

• SPs (bottom-up): Specialised Processes generate hypotheses directly from the raw 

sensor data. They only operate bottom-up (e.g. haar-classifier for face detection).  

• LLPs (bottom-up): LLPs derive symbolic low-level features, in most cases from 

the raw image data (e.g lines), but sometimes from other features (e.g corners).  

• KSs (bottom-up): KSs use their background knowledge Σ  to form hypotheses 

∆ to explain the features Γ found such that Σ ∧ ∆  |= Γ [7]. In other words, the KSs 

use knowledge about the world to publish hypotheses to explain the sensor data.  

• KSs (horizontal): Other KSs can increase the informational value of hypotheses 

posted by others by adding supporting or contradicting evidence. This is possible 

even where this evidence by itself did not warrant the posting of a hypothesis.  
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• KSs (top-down): KSs can add noise terms to represent expected-but-not-detected 

features. As these share a representation with the equivalent detected features, the 

relevant LLP(s) can confirm or rule out their existence by revisiting the image data.  

Object hypotheses formed can at times be mutually exclusive as they describe the 

same object in different ways, or they use a feature for several objects. The scene 

analysis forms scene hypotheses from non-conflicting objects. By combining the 

confidence values of the objects, a qualitative measure for the competing scene 

interpretations can be derived and the most likely selected. Confidence values are 

quality measures assigned to features and hypotheses (Section 3.3). 

3. Knowledge Representation 

 
Fig. 1. Data structures on the blackboard 

Data stored on our blackboard (Fig. 1) is grouped into the following 4 hierarchical 

layers: raw sensor, feature-, object- and scene information. The raw sensor data level 

contains the image data and edge map. From this LLPs predict feature information, 

which in turn is used by the KSs to derive hypotheses and to publish them at the 

object information level. Finally, these can be analysed by the scene interpretation 

KS. Information in these higher layers is stored in a symbolic form, e.g. line(from,to).  

3.1. Data structure 

The data structure describing an item of data at any level above raw sensor data 

consists of a public and a private section. While the information in the public part is 

available to any process, the private data can only be read by those that share the 

particular representation used. The item’s ID and confidence value are public. In the 

case of an object hypothesis generated by a KS, the public part also includes a general 
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description of the outline of the object to allow other processes to contribute. The 

content of the private section depends on the type of data. In the case of a line, for 

example, this is its start and end points. For an object, this section contains lists of the 

features associated with the hypothesis. Each such feature has a corresponding 

support value representing its individual relevance to the hypothesis. The combination 

of the confidence and support values of the features of the hypotheses allows us to 

select the most successful hypotheses as described in section 5.  

Due to this data structure the system is easily expandable. A new process will need to 

understand the representation of its input data and translate its outputs into the form 

described here. Other processes can use any results it then publishes on the 

blackboard. Information can flow horizontally as other KSs can contribute to 

hypotheses it posts. This also allows for several processes producing the same type of 

output (e.g. two different line finding algorithms).  

3.2. Support Value 

The support value determines the impact a feature or object can have on the overall 

confidence value of the structure it is associated with. There are six distinct levels:  

1. HasToExist: If the feature exists, its positive effect depends on the confidence we 

have in the feature. If it doesn’t exist, the hypothesis can not be true. This support 

value is assigned to any feature that a hypothesis is based on when it is initially 

created. It is often used if a feature changed the overall description of the object.  

2. ShouldExist: If the feature exists, it again has the full positive effect, otherwise the 

effect is equal in absolute value but negative. A KS assigns this level if a feature is 

of importance to the hypothesis but it isn’t imperative.  

3. GoodIfExists: If the feature exists, it has a positive effect proportional to the 

confidence we have in the feature. If it can not be found, this doesn’t influence our 

confidence in the hypothesis. If a KS determines that a feature’s absence doesn’t 

necessarily contradict its truth value, it assigns this level of support.  

4. GoodIfDoesnotExist: This is the inverse of GoodIfExists.  

5. ShouldnotExist: This is the inverse of ShouldExist. 

6. MustnotExist: This is the inverse of HasToExist.  

3.3. Confidence Value 

The confidence value is a measure of the quality of the data item as determined by the 

process that posted it on the blackboard. Preferential grouping is employed to specify 

the quality of the features. The bottom two groups are for features that have been 

confirmed to not exist (”0”) and for expected-but-not-yet-detected (”1”) features 

respectively. A sensitivity study to determine the optimum number of groups above 

these levels still has to be carried out. The experiments in section 4 were conducted 

with 3 “positive” groups (so a total of 5). 

• Feature Information: Here confidence is a measure of the quality of the sensor 

data the prediction of the features is based on. Here we include two examples to 

demonstrate the general idea of how these values can be obtained: 
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The confidence value CL of a line was calculated from its relative length LL 

compared to the longest line ML, the number of pixels found per unit length LP of 

the line relative to the highest number of pixels found per unit length MP of all the 

lines and the straightness LS of the line relative to the straightness MS of the 

straightest line as measured by regression. These three factors are weighted by the 

experimentally derived, constant values WL, WP and WS respectively.  

)/*()/*()/*( MSLSWSMPLPWPMLLLWLCL ++=  (1) 

The confidence value CC of a corner can be calculated from CL1 and CL2, the 

confidence values of the two lines of the corner respectively, and the angle Θ 

between these lines: 

)))(*2(sin(*)2/)21(( Θ+= absabsCLCLCC  (2) 

With this formula we express our preference for corners made of lines with high 

confidence values that are either at right angles to each other or close to being one 

straight line. The system therefore favours rectangular or circular objects.  

• Object & Scene Information: The confidence in a hypothesis is calculated from 

the features associated with it and the KSs that contributed. This part of the work 

is still under investigation and several possible methods are being explored as 

described in section 5. All proposed methods have two important properties: 

firstly, the process assessing the overall confidence of a hypothesis neither needs 

to understand anything about the features assigned to it nor how they are related to 

each other. Secondly, should the confidence value of some feature change for 

example because a noise term was found, this new information will automatically 

propagate up to the object- and scene information levels. These properties ensure 

the system is robust and easily expandable.  

3.4. Noisy and Incomplete Data 

Vision data is generally incomplete and noisy. Two types of noise are relevant here:  

• False Detection: A process finds a feature/object that does not actually exist and 

can consequently contradict an otherwise correct hypothesis. When this situation 

occurs, or any other feature contradicts a hypothesis, the process will add the 

feature to the hypothesis using a support value of 4 or above. In some cases a 

correct hypothesis might therefore be assigned to low a confidence value due to 

interfering noise.  

• Omission: When observing a scene the system fails to detect a feature/object that 

should be present (e.g. the third corner of a triangle). Using their background 

knowledge, KSs can sometimes notice missing features. Such expected-but-

undetected features are added to the blackboard as noise terms. Their structure 

and the information contained are equivalent to the corresponding features, but 

their confidence value is set to “1”. The LLPs can now go back to the original 

data and reassess the situation (e.g. by changing thresholds locally). After 

confirming or disconfirming the existence of the sought feature, they set the 

confidence value to a confidence group value “>1” or “0” respectively.  
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4. Experimental Apparatus 

 
Fig. 2. KS Interdependence (LLPs, KSs and SPs are represented by ovals, squares and 

“crosses” respectively) 

This experimental set-up was designed for a limited domain to test and prove the 

principles of this architecture and to compare different methods of evaluating the 

hypotheses. At this time one SP, several LLPs and some of the corresponding KSs 

were chosen to allow for bottom-up, top-down and horizontal information flow and 

limited scene interpretation (Fig. 2). Due to the limited quantity, quality and chosen 

combination of LLPs and KSs, the system was best at picking up on certain types of 

objects (e.g. JointCorners for objects with round borders; BestCorners for cuboids). 

For a real world robot, a multitude of SPs would be included to allow it to perform the 

tasks it was designed for and many KSs would be required to deal with a wide range 

of unknown objects. Further, it can be expected that the performance of the system 

could be increased by replacing our off-the-shelf algorithms by the latest research.  

For our experiments we used a 3GHz P4 with 1GB of RAM with the firewire MEGA-

D colour camera from Videre Design. Most experiments were carried out at 320x240 

pixels. The camera was either handheld or mounted on a mini-tripod. Most of the 

sources were implemented in C++ and OpenCV. 

• EdgeDetection: Two edge detection processes were used: (1) A Sobel edge 

detector [5] using a 3x3 grid and (2) the Canny operator of the OpenCV Library. In 

both cases we thresholded the output.  

• LineDetection: A regression line finding algorithm and a Hough transform were 

used to find lines from the output of the Sobel and Canny processes respectively.  

• CornerDetection: Two lines with adjacent ends were considered to be a corner.  

• MotionDetection: To detect motion we compared the last 4 frames and then 

separated motion patches from each other and from global motion. Each patch was 

approximated by a polygonal curve. The confidence value depended on how 

uniform the motion was across the patch.  
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• RegionFinding: Using OpenCV-functions, the area found by a seeded region 

growing algorithm was approximated by polygonal curves. The confidence was 

calculated from the proportion of the polygon area covered by the grown region.  

One SP was implemented to test whether the combination of the outputs of SPs and 

LLPs/KSs delivered the desired results. A Haar Classifier for face detection from the 

OpenCV Library was used for the implementation.  

While all data from the feature level upwards was represented symbolically, it was 

mostly manipulated algorithmically. The following KSs have been implemented:  

• BestCorners (bottom-up and horizontal): A really good corner was considered a 

clue for the existence of an object. The five best corners found were used.  

• JoinCorners (bottom-up and horizontal): If two corners shared a line, they were 

considered joined. The greater the number of joined corners, the better the clue.  

• Motion (bottom-up): Motion patches of a similar nature were grouped, the convex 

hull around them being the motion area. Confidence was calculated from the 

correlation of the motion direction and speed of the patches and the proportion of 

the total associated area covered by the detected motions. 

• SeedCorners (top-down and horizontal): Given a corner, this KS tried to find 

colour regions between the two lines. 

• SeedHypotheses (top-down and horizontal): This KS searched for one or more 

regions such that the area of the hypotheses was filled. 

• History (top-down): The best hypotheses from the previous frame were used to 

check whether the object might be present in the current frame.  

• RegionCorners (top-down): This KS tried to find corners that coincide with the 

corners of the current outline of the object hypothesis.  

Just as important as finding the objects is to know which of your hypotheses are the 

most successful ones. To allow for any combination of processes to work together this 

evaluation has to be independent of the different sources and data types. Several 

methods were tried and compared individually and in different combinations: 

• CountSources: The number of contributing sources was important.  

• CountWeighSources: The number and the type of source were considered.  

• CountFeatures: How many features are associated with the hypothesis? 

• CountWeighFeatures: Evaluated the hypothesis by the confidence of its features.   

• CountFeaturesWeighSources: Here the features were counted and while their 

individual confidences were not important, the system considered their origins.  

• WeighFeaturesWeighSources: Additionally to considering the confidence and 

support values of the features, we gave their sources different weightings.  

5. Results 

Two factors are important when evaluating this system. Firstly, how well does the 

system detect objects? Performance was measured by comparing the hypothesis area 

with the object area. Objects covered 90-110% by the hypotheses were considered 

correctly identified. Secondly, does the system recognise the best solution? If the 

program identified one of the correct hypotheses as the best solution, the evaluation 

process was considered successful even if better approximations were rated lower.  
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Experiments were carried out on several different types of environments. In each 

category several different scenes were tried. The following properties were observed: 

• Elementary objects in a structured environment (Fig. 3): Background noise was 

eliminated as far as possible with single colour background and by usage of 

lighting. In at least 95% of runs the system was able to generate hypotheses which 

covered at least 98% and no more than 102% of the object’s surface. While it did 

not always select the optimum solution, according to the definition above it 

succeeded in over 95% of the runs.  

• Elementary objects in an unstructured environment (Fig. 4): With everyday 

backgrounds and no additional lighting set up but using objects well suited to the 

LLPs and KSs, the system would still correctly detect objects in 90% of cases. A 

correct hypothesis was identified in approximately 2/3 of the experiments.  

• Everyday objects in an unstructured environment (Fig. 4): The system detected 

other objects as long as they had properties that suited the limited number of LLPs 

and KSs (e.g. they were moving or they had some straight lines and corners). Here 

the success rate varied a lot depending on the type of object used. Only weak 

correlations between what human observers would consider the order of 

hypotheses and the ranking the system calculated could be identified.  

• Changing environmental conditions (e.g. lighting; Fig. 6-7): Processes react very 

differently to such changes. For example lack of light can reduce contrast and 

therefore the number of lines found. Motion is affected to a much lesser extent. 

During the limited number of experiments carried out it was observed that, as the 

results produced by one combination of processes deteriorated, others more suited 

to the new conditions would smoothly take over in approximately 3 out of 4 runs  

• Specialised tasks: The output of a face detection algorithm from the OpenCV 

library was successfully integrated with information from other sources.  

 
Fig. 3. A ball detected in the structured 

environment by JoinCorners. RegionCorners 

and SeedHypotheses further contributed.  

 
Fig. 4. Unstructured environment with 

elementary (ball and cube) and everyday 

(mug) objects. The system drew what it 

considers the best hypotheses.  

The following, more general observations were made:  

• Using more channels results in better or equal hypotheses. In Fig. 5 it can be seen 

that the combination of all channels was always closest to the solution (100%).  

• The ultimate confidence value of a hypothesis was independent of the order in 

which processes contributed to it by adding features and noise terms.  
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• The order in which processes posted new hypotheses did not make a difference if 

the system was not interrupted prematurely. 

• When confidence values changed, the new values propagated through the system. 

Further examples can be found online at http://www.doc.ic.ac.uk/~tpg99.  

 
Fig. 5. The best hypotheses found by different combinations of KSs (selected by observer). 

 
Fig. 6. Block world object in low light. The 

hypothesis was added by JoinCorners. 

 
Fig. 7. With less light, the dominant KS was 

Motion. While the quality of the hypothesis 

decreased, the object was still detected.  

6. Conclusions 

At this time a SP and several LLPs and KSs have been implemented allowing for 

bottom-up, top-down and horizontal information flow and limited scene 

interpretation. When observing simplified objects correct hypotheses were formed 

and identified as such in most of the experiments run. Everyday objects were often 
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detected but the hypotheses were of a lower quality. When evaluating hypotheses a 

general order was established in most cases, but the system had problems detecting 

outliers such as colour regions spilling out of an object. We conclude further work is 

required to achieve acceptable results. A sensitivity study has to be carried out with 

regards to the number of preference groups for each datatype. The experiments 

indicate that by including more LLPs and KSs more varied scenes will be observable. 

This could include more complex analysis such as observation of interacting objects. 

Due to the prioritisation of hypotheses based on the confidence values, computational 

explosion was not a problem. With the introduction of parallelism, we are confident 

the architecture will scale up to include hundreds of processes. To further increase 

performance the architecture will be deployed in programmable hardware.  

The principles developed here emphasise vision. Since there is no restriction on the 

sources of low-level sensor data, not only new vision processes, but also other types 

of sensors could be gracefully integrated into an existing system.  
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