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.ukAbstra
t. The COSPAL ar
hite
ture for autonomous arti�
al 
ogni-tion utilises in
remental per
eption-a
tion learning in order to generatehierar
hi
ally-grounded abstra
t representations of an agent's environ-ment on the basis of its a
tion 
apabilities. We here give an overview ofthe top-level relational module of this ar
hite
ture.The �rst stage of the pro
ess hen
e involves the appli
ation of ILP to at-tempted a
tion out
omes in order to determine the set of generalisedrule proto
ols governing a
tions within the agent's environment (ini-tially de�ned via an a priori low-level representation). In the se
ondstage, imposing 
ertain 
onstraints on legitimate �rst-order logi
 indu
-tion permits a 
ompa
t reparameterisation of the per
ept spa
e su
hthat novel per
eptual-
apabilities are always 
orrelated with novel a
-tion 
apabilites. We thereby de�ne a meaningful empiri
al 
riterion forper
eptual inferen
e.Novel per
eptual 
apabilities are of a higher abstra
t order than the a pri-ori environment representation, allowing more sophisti
ated exploratorya
tion to be taken. Gathering of further exploratory data for rule indu
-tion hen
e takes pla
e in an iterative 
y
le. Appli
ation of this me
hanismwithin a simulated 'shape-sorter' puzzle environment indi
ates that thisapproa
h signi�
antly a

elerates learning of the 
orre
t environmentmodel.1 Introdu
tion1.1 Bootstrapped per
eptual representations in the COSPAL
ognitive ar
hite
tureThe aim of EU COSPAL1 proje
t is to 
reate an open-ended 
ognitive ar
hite
-ture for real-world implementation via in
remental per
eption-a
tion learning[3℄. Per
eption-a
tion learning hen
e seeks to address the frame-related diÆ
ul-ties2 asso
iated with autonomous 
ognitive agents by the expedient of 
reating1 COSPAL is an a
ronym for 'COgnitive Systems using Per
eption-A
tion Learning'.2 The frame problem [7℄ refers to the open-endedness of logi
al predi
ation asso
iatedwith typi
al real-world a
tions. This is 
aused prin
ipally by the domain des
riptionbeing very mu
h ri
her than that of the a
tion domain.
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per
eptual representations only when they are 
apable of being di�erentiated bythe agent's a
tions.When, as in the COSPAL ar
hite
ture, learning is open-ended (su
h thata
tion 
ompeten
es 
an be built-up in a hierar
hi
al fashion), the adoption ofa per
eption-a
tion paradigm ensures that the in
reasingly abstra
t and sym-boli
 representations at the top-level of the hierar
hy are always grounded inmeaningful a
tions at the lower-level of the hierar
hy. We thus spontaneouslyinfer new per
eptual 
ategories in a manner that simultaneously allows for the
ontinuous re�nement of models in the obje
tive domain, in a way that wouldbe paradoxi
al or ill-founded for non per
eption-a
tion learners3. We term this
ognitive bootstrapping [1,2℄.Ideally, we would like the higher-levels of representation to in
lude formalstru
tural entities as well as the sto
hasti
 labels asso
iated with the existingCOSPAL visual and motor-
ontrol systems. In this way, the system 
an inferappropriate per
eptual entities in 
omplex rule-based environments (for exam-ple, a game of 
hess), by autonomously 
alibrating the lower-levels of visualrepresentation (su
h that, for instan
e, individual 
hess-squares and pie
es arepreferentially segmented out) on the basis of their signi�
an
e for the inferredhigh-level a
tion proto
ols (the rules of 
hess, in this 
ase).Our goal in the 
urrent paper is hen
e to implement an Indu
tive Logi
Programming (ILP) module within the COSPAL ar
hite
ture 
onsistent withthe 
ognitive bootstrapping ideal. This will involve an iterative three-stage pro-
ess involving: (1) Indu
tion of the logi
al rules underlying a
tion feasibility,(2) Remapping of the per
eptual variables to best represent the 
lass of legit-imate a
tions, (3) A
tive exploration of the environment on the basis of thisrepresentation.We will show that the gradual iterative re�ning of the per
ept spa
e so as tobest represent feasible a
tions inherently a

elerates the pro
ess of learning theenvironment proto
ols, giving the randomised exploratory a
tions an in
reas-ingly 'intentional' 
hara
ter.1.2 Experimental Instantiation Within the Shape-SorterEnvironmentThe test domain of the COSPAL ILPmodule is thus a simulated three-dimensional'shape-sorter' puzzle. Here, variously shaped pie
es 
an be positioned freelyaround the puzzle's surfa
e and also pla
ed within unique holes 
orrespond-ing to their shape; pie
es 
an also be sta
ked. The a
tive agent embodied withinthis environment is a roboti
 gripper arm 
apable of positioning itself anywherein the volume above the board and shapes.The a
tions (representing the a priori motor spa
e) initially available tothe simulated COSPAL agent are thus limited to positional translations of the3 Without the per
eption-a
tion relationship obje
t-model errors 
an simply be sub-sumed by the per
eptual inferen
e.
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gripping arm, whi
h is assumed to perform a 'grasping' a
tion at the start-ing position of the attempted translation and a 'releasing' a
tion at the �nalposition of the proposed translation (we thus, at this stage, eliminate the pos-sibility of obje
t rotation). Be
ause of the per
eption-a
tion equivalen
e, this apriori motor-spa
e 
orresponds exa
tly to the a priori per
eptual domain, whi
his hen
e 
hara
terised as a dis
retised �nite three-dimensional Cartesian spa
eequipped with topologi
al adja
en
y relations. Ea
h dis
rete volumetri
 positionis asso
iate with a parti
ular label (denoting o

upan
y by a parti
ular 
lass ofobje
t, though this 
on
ept is not yet representable by the agent).A
tions are 
onsequently initially spe
i�ed by the six-tuple instru
tion:'move(x1; y1; z1; x2; y2; z2)' indi
ating a transition from position (x1; y1; z1)to position (x2; y2; z2), both de�ned by three-dimensional ve
tors.The environment is initially modelled by the inje
tive fun
tional relationshipbetween the Cartesian spa
e (X;Y; Z) and the set of labels fLg. We will laterseek to model the environment on the basis of a�ordan
e; the ability of the agentto permute this fun
tional relationship. To do this we need to appropriately gen-eralise the legitimate a
tions within this environment. A
tion legitima
y is hen
edetermined in the most general and least environmentally-spe
i�
 terms: by thesu

ess or failure of the a
tion to do what was intended. Thus, we assess thelegitima
y of the a
tion 'move(x1; y1; z1; x2; y2; z2)' on the basis of its stability(the �nal state must not undergo further 
hanges not indu
ed by the agent) andits utility (the �nal state must be di�erent than the initial state). The movementfrom (x1; y1; z1) to (x2; y2; z2) must hen
e involve the gripping and releasingof an obje
t at a lo
ation in whi
h it is supported. This 
an only happen ifan (unen
umbered) obje
t exists at (x1; y1; z1) and a free position exists at(x2; y2; z2), with a supporting surfa
e immediately below it - at (x2; y2; z2� 1)on the assumption of a shape 'depth' of 1.A supporting surfa
e is thus any one of the following entities: the puzzle, anyother shape, a hole that does not mat
h the moved shape, or a hole that doesmat
h the shape, but has a di�erent orientation to that of the shape itself. (Po-sitions are dis
retised so that partial overlaps between obje
t and holes are notpermitted4). The subset of the (jx1j�jy1j�jz1j)2 possible transitions within thea priori motor-spa
e that are legitimately performable are thus approximatelyjshapesj � jx2j � jy2j in number.Given that the a priori per
ept 
lasses existing prior to 
ognitive bootstrap-ping are positional o

upan
y labels, where positional relations are determinedby 
ertain prior adja
en
y and topology relations, we also require a 
orrespond-ing a priori stru
ture 
apable of determining relations between the individuallabels. These take the form of 
lass and relationship predi
ates 
apable of dis-tinguishing: positional o

upan
y labels, shape-labels, hole-labels, hole-shape la-bel 
orresponden
es, and orientation labels (these are hen
e in addition to the4 Obviously, a real physi
al shape-sorter puzzle would be more 
omplex than simpli�edrepresentation, permitting, for instan
e stable, but verti
ally-tilted states for themoved obje
t; we are here attempting to ensure that legitimate transitions form atransparently 
losed 
lass (a group, mathemati
ally).
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(x; y; z) adja
en
y labels asso
iated with positional predi
ates). In spe
ifyingthese predi
ates, it is important to appre
iate that the prior per
eptual stru
-tures have as yet no a
tion-determined meaning; they a
t merely as label allo-
ation fun
tions.In implementing 
ognitive bootstrapping in this domain our aim is, �rstly,the determination of the legitimate transition rules (ie, the obje
t model), andse
ondly the remapping of the a priori per
ept states su
h that only the legitimatea
tion state transitions are per
eived. That is, we would like to �nd a 
ompa
tbut maximally des
riptive per
ept spa
e in whi
h all states are a

essible byperformable a
tions. We shall demonstrate that this maximally des
riptive spa
eis always of a higher-level of abstra
tion than the a priori spa
e.In alternating between per
eptual remapping and exploratory a
tion 
arriedout in terms of the inferred per
epts we shall hen
e also implement a parti
ularinstan
e of a
tive learning [4℄, and, as su
h, will expe
t to a
hieve signi�
antlyfaster learning within the obje
tive domain (whi
h is to say, faster 
onvergen
eon the legitimate a
tion states).We therefore now turn to a des
ription of the implementation of the simulatedexperimental environment in logi
al terms, and follow this with a des
ription ofthe use of indu
tive logi
 programming (ILP) for 
on
ept generalisation, allow-ing the remapping of existing per
epts into a more 
ompa
t spa
e in whi
h allproposed a
tions are assumed to be a
hievable.2 First Order Logi
al Implementation of the Shape-SorterIt is evident that an inferen
e system 
apable both of proposing novel exploratorya
tions and of evaluating their out
omes must be one of generalisation. More-over, this generalisation is, at its highest level, inherently relational given thenature of the shape-sorter environment: sto
hasti
 generalisation is then limitedto the lowest level of the per
eptual hierar
hy. For the present purposes, weshall assume ideal sto
hasti
 generalisation su
h that there is no ambiguity (andno redundan
y) amongst the base per
eptual 
lasses (shape, position, et
). Ourproblem is thus purely one of rule inferen
e5.Spe
i�
ally, sin
e the shape-sorter puzzle is proto
ol-based, our problem isthe inferen
e of a
tion rules that are given in terms of general variables, for whi
ha parti
ular label 
onstitutes a variable instantiation. We are hen
e impli
itly
onsidering a �rst-order logi
 system, in whi
h a given move represents a logi
alproposition that may or may not be ful�llable in terms of the logi
al axiomsdes
ribing the shape-sorter environment. This strongly suggests an implemen-tation of the shape-sorter within an indu
tive environment su
h as PROLOG,within whi
h the negation or aÆrmation of movement propositions with respe
tto the environment axioms is representable as a goal.5 In the full implementation, rule inferen
e is permitted to dire
tly in
uen
e thesto
hasti
 
lustering of the lower hierar
hi
al layer, su
h as by unifying 
lusterswith identi
al logi
al relations in the manner of [5℄ (though the me
hanism outlinedin [5℄ does not undertake a 
omparable per
eptual remapping phase).
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We hen
e set out to de�ne the shape-sorter puzzle in logi
al, rather physi
alterms, su
h that it be
omes possible to later use Indu
tive Logi
 Programming toinfer the logi
al axioms de�ning the system given only a few spe
i�
 exploratoryinstan
es. This, in essen
e, is to de�ne a semanti
 parser for the shape-sorterpuzzle in PROLOG.2.1 PROLOG ImplementationWe thus de�ne the shape-sorter proto
ol in terms of the a priori 
ognitive
ategories given earlier, whi
h we shall render as the PROLOG predi
ates:free position(X;Y; Z), is hole(X), hole shape mat
h(A;B), orientation(X;O)and position(A;X; Y; Z) (where A and B represent entity labels, X , Y and Zrepresent ordinal position labels, and O is an angle label). We also introdu
ean elementary topologi
al relation appli
able to ea
h of three ordinates indi-
ating dire
tional adja
en
y: in
 x(X1; X2), in
 y(Y 1; Y 2) and in
 z(Z1; Z2),su
h that, for example, in
 x(X1; X2) is only satis�ed when X2 = X1 + 1.(Angles and positions are hen
e both �nite and dis
rete, being limited to 10and 120 = jX j � jY j � jZj= 3� 8� 5 possibilities, respe
tively). Again, we em-phasise that these predi
ates are labelled so as to assist 
omprehension; thereare as yet no a
tion-determined meaning asso
iated with the terms. Criti
ally,these base per
ept 
ategories have the potential to delineate higher-level 
on
eptssu
h as the spa
e above an obje
t A via 
on
atenation, ie: position(A;X; Y; Z),in
 z(Z;Z1), free position(X;Y; Z1) (though this is has not yet been madeexpli
it: this will be the aim of per
eptual remapping). The logi
al rules thus
orrespond to the physi
al rules of the shape-sorter environment in an broadlyintuitive fashion. The rules governing move legitima
y in this simpli�ed shape-sorter are thus rendered in PROLOG as the three-
lause sequen
e:move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in
 z(Z1; Z3); free position(X1; Y 1; Z3);free position(X2; Y 2; Z2); in
 z(Z4; Z2); position(B;X2; Y 2; Z4); not(hole shape mat
h(A;B)); not(A == B):move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in
z(Z1; Z3); free position(X1; Y 1; Z3);free position(X2; Y 2; Z2); in
 z(Z4; Z2); position(B;X2; Y 2; Z4); is hole(B); hole shape mat
h(A; B);orientation(A; O1); orientation(B; O2); not(O1 == O2):move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in
z(Z1; Z3); free position(X1; Y 1; Z3);position(B;X2; Y 2; Z2); in
 z(Z2; Z3); free position(X2; Y 2; Z3); is hole(B); hole shape mat
h(A; B);orientation(A; O1); orientation(B; O2); O1 == O2:(with 
ommas separating simultaneously satis�ed logi
al 
onstraint 
onditions,and distin
t 
lauses separating alternative logi
al satisfa
tion 
onstraints.)3 Indu
tive Logi
 Programming in the Shape-SorterDomainWe now wish to 
onstru
t a system 
apable of inferring a rule set su
h as theabove from spe
i�
 examples of exploratory moves along with their (positive or
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negative) out
omes. Sin
e we are in the domain of �rst-order logi
, we are 
onse-quently interested in Indu
tive Logi
 Programming [6℄. A natural implementationof ILP for our appli
ation is Muggleton's PROGOL. PROGOL operates by 
on-stru
ting the most spe
i�
 
lause of the �rst of the set of positive examples fromwhi
h we wish to 
onstru
t the general rule. The most spe
i�
 
lause is the 
on-
atenation of all true predi
ation appli
able to this positive example, sele
tedfrom the range of possible 'body predi
ate' mode de
larations. Predi
ates arethen randomly pruned from this 
lause giving rise to a more generalised set of
lauses whi
h are tested both for their 
onsisten
y with the negative examplesand their 
ompression of the positive examples. The most e�e
tive of these isthen sele
ted as ba
kground knowledge and used to remove redundant positiveexamples, after whi
h the pro
ess begins again with the �rst of the remainingpositive examples.Thus, we intend to perform exploratory a
tions arising from 
ognitive boot-strapping within the simulated environment de�ned by the PROLOG rules givenin se
tion 2.1, attempting inferen
e of them via PROGOL. For the 
urrentdemonstrative purposes, rather than 
onsidering temporal sequen
es or multiplerandom instantiations of a single simple puzzle 
on�guration, we shall, in obtain-ing our test data, opt rather to perform single a
tions on a �xed, but large andvaried, puzzle 
on�guration (slightly simplifying the form of mode de
larations).4 A
tive Learning Via Cognitive Bootstrapping in theRelational DomainIn seeking to simultaneously infer optimal obje
t and per
ept models we shallhen
e implement a system of iterative alternation between the exploratory andthe environmental (obje
t-model) inferen
e phases. Cognitive bootstrapping thenstands as an intermediary between these two phases. Spe
i�
ally, it takes the 
ur-rent environmental inferen
e (that is, the attempted inferen
e via PROGOL ofthe shape-sorter PROLOG rules when given the 
umulative out
omes of all ofthe previous exploratory moves), and seeks to rede�ne the per
ept spa
e in amanner appropriate to this newly-assumed environmental model. This remappedper
ept spa
e then, in turn, suggests a new set of exploratory moves (in e�e
t,the per
ept remapping re-parameterises the environmental model), thereby test-ing both the environmental and per
eptual hypotheses at the same time, whileover
oming the potential paradox involved in their interdependent de�nitions.We now look at exa
tly how this per
eptual remapping is a
hieved:4.1 Remapping of the Per
ept Spa
eSuppose that the appli
ation of PROGOL to the 
umulative exploratory datahas given rise to the inferen
e of a partially a

urate rule. The following is atypi
al example of the sort of rule infered after four legitimate exploratory a
tionexamples have been 
ollated (along with very many more negative exploratorya
tion examples):
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move(X1; Y 1; Z1;X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in
 z(Z3; Z2); position(B;X2; Y 2; Z3):(This 
orresponds to the 
onstraint that an obje
t must be pla
ed on top ofanother obje
t)6.We noti
e that this rule has introdu
ed three new variables (A, B and Z3)beyond the existing six variables (X1; Y 1; Z1; X2; Y 2; and Z2) used to spe
-ify the a priori motor-spa
e. As a 
onsequen
e of the nature of PROGOL, thepredi
ate terms within the body of the above 
lause must de
lared with a spe-
i�
 input/output stru
ture. For instan
e, the body mode de
laration for the'position' predi
ate is : �modeb(1; position(�entity;+xint;+yint;+zint)), in-di
ating that for a given 3-D positional input, a single entity 
lass obje
t labelis given as output. However, we have so spe
i�ed the mode de
larations thatthere is also a 'position' predi
ate body mode de
laration given with exa
tlyopposite input/output stru
ture (whi
h 
an, if ne
essary, be di�erentiated viaan appropriate suÆx). Furthermore, in 
onsequen
e of the parti
ular design ofthe shape-sorter logi
al proto
ols, this symmetry is 
ommon to all of the predi-
ates that have both an input and an output (so that, for instan
e, an o

upiedposition always de�nes a unique shape label, while a given shape label alwaysde�nes a unique position). We have thus adopted a stri
tly fun
tional de�nitionof predi
ation within the mode de
larations.This will not ne
essarily be the 
ase within general logi
al environments;however, in the 
ase of physi
al environments su
h as the shape-sorter this sym-metry permits us to invert the input/output stru
ture. Hen
e, visually renderingthe 
lause I/O stru
ture (as in �gure 1) and reading the diagram from left toright, it be
omes apparent that the six initial input variables are mapped totwo �nal output variables. Consequently, reading the vertex stru
ture from rightto left after having imposed opposite input/output stru
ture in the individualpredi
ates permits us to see that the 
lause stru
ture undergoes a transitionfrom the two input variables A and B, to the six original variables. In so far asit is permissable to regard variable instantiations as ordinates, it is hen
e pos-sible to re-parameterise the original six-dimensional spa
e as a two-dimensionalspa
e 
hara
terising the spa
e of possible moves. In doing so we have lost noneof the posible instatiations of legitimate a
tions: we have merely removed all ofthe logi
al redundan
y. This then is the proposed per
ept spa
e, where we have,in 
hoosing the observables as fA and Bg rather than fX1; Y 1; Z1; X2; Y 2;and Z2g, e�e
tively re-
on
eived the per
ept spa
e in the higher-level terms ofobje
ts and surfa
es rather than the lower-level 
on
ept of positions. We thusrede�ne the six dimensional a
tion spa
e: move(X1; Y 1; Z1; X2; Y 2; Z2) as thetwo-dimensional spa
e:move(A;B). Randomised a
tions in the re
onsituted per-
ept spa
e are thus now of the 'put obje
t A onto surfa
e B' type, as opposedto the 'move gripper from (X1; Y 1; Z1) to (X2; Y 2; Z2)' type; that is, they aremu
h more 'intentional'. In algorithmi
 terms, this per
ept remapping is simplya 
ase of establishing whi
h of the newly introdu
ed variables are non-nestedwith respe
t to the ensemble of sets of variables de�ned by the various predi-6 This is in fa
t suÆ
ient to 
orre
tly eliminate the vast majority of the (jx1j � jy1j �jz1j)2 proposable transitions in the a priori spa
e.
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hemati
 of 
lause stru
ture.
ate groupings. This is the equivalent of determining whi
h of newly introdu
edvariables appears in only one of the predi
ate groupings when predi
ates withonly input or output stru
tures are ex
luded: individual 
lauses are assumed too

upy separate spa
es.4.2 A
tive and Passive Exploratory PhasesWhile the above method might thus be expe
ted to in
rease the speed of 
onver-gen
e on the �nal obje
t and per
ept models, it is evidently possible that it 
an
ause 
onvergen
e on a lo
al, rather than global minimum, represented by ana

urately inferred subset of the totality of permissable moves. Hen
e, we shallalternate the 
ognitive bootstrapping phase with a random exploratory phasethat makes no high-level per
eptual assumptions7. The a
tive phase thus, in ef-fe
t, a
ts to fo
us on those areas deemed permissable by the inferred rule su
hthat data 
apable of falsifying it is obtained very mu
h more qui
kly than wouldotherwise be the 
ase (PROGOL requires only one instan
e to falsify a hypoth-esis). The random phase then a
ts to 
olle
t data that is indi
ative of generalenvironmental rules, of whi
h the a
tive phase is perhaps investigating only asubset. The 
ombination of the two approa
hes hen
e produ
es an exploratorymethod 
apable of rapidly as
ending performan
e gradients, while at the sametime undergoing random perturbations 
apable of �nding alternative, perhapsmore global, gradients to as
end.As a 
alibration for the above method of alternation (whi
h might be 
onsid-ered a primitive form of simulated annealing), we also provide a purely passive-learner in whi
h PROGOL inferen
e is applied only to random exploratory a
-tions 
umulatively derived from the a priori per
ept spa
e (X1, Y1, Z1, X2, Y2,Z2). For both types of learner, 10 exploratory a
tions are undertaken at ea
hiteration.7 Note that there are potentially more eÆ
ient variants on this approa
h, su
h asembarking on a random exploratory phase only after a
tive per
ept learning per-forman
e has rea
hed a plateau (if some lo
al 
riterion 
ould be established todetermine this, su
h as 
ompressive 
apability with respe
t to the 
umulative ex-ploratory results). For this proof-of-
on
ept demonstration, however, we opt for themost straightforward approa
h.
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5 Results and 
on
lusions5.1 Experimental �ndingsWe give the average result of ten output runs (
ommen
ing after an initial rule-indu
tion of 96% a

ura
y) in �gure 2. The ratio of passive 
y
les to a
tive
y
les in the 
ognitive bootstrap learner is 5 to 1 (
orresponding to 10 attempteda
tions during the 
ognitive bootstrap 
y
le followed by 50 a
tions during therandom exploration 
y
le); this is 
ompared with a purely passive learner. Itis evident that the a
tive learning pro
edure a
hieves 
onvergen
e 
onsiderablyfaster than the passive learner, 
onverging on a signi�
antly higher a

ura
y�gure at the extremity of the tested range.De�ning, more a

urately, the respe
tive absolute performan
e values onwhi
h the learners 
onverge as the average performan
e value after they have
ome within 1 per
ent of their maximum values, we see that the performan
e�gures are 99:57 per
ent for the a
tive learner and 99:28 per
ent for the passivelearner.
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Fig. 2. A

ura
y vs iteration number for the 
ogntive boostrap and passive learners.
5.2 Con
lusionsThe outlined experiment has thus demonstrated how it is possible to build arelational per
eption-a
tion learner for the COSPAL ar
hite
ture 
apable of si-multaneously optimising a per
ept-domain while optimising its model of theexternal world des
ribed in terms of these per
epts. Thus, 
ognitive bootstrap-ping aims to 
reates a spa
e of per
eived a
tion possibilities that are always(in prin
iple) realisable, and where redundant a
tion possibilities are eliminated
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from per
eption. The outlined method hen
e 
onstitutes an arti�
al realisationof Phenomenologists' goal (eg [8℄) of relo
ating the 
on
epts of representationand symboli
 meaning in the intera
tion between an agent's 
apabilities and theworld, as opposed having them spe
i�ed by purely internal states (ie 'subje
-tively'), as they are in 
onventional ma
hine vision.In 
arrying-out this instantiation of relational 
ognitive bootstrapping in aCOSPAL-like environment, we have also found eviden
e that, in so far as it maybe regarded as form of a
tive learning (that is, when the remapping of the per
eptspa
e dire
tly suggests novel exploratory a
tions), 
ognitive bootstrapping 
angive rise to signi�
antly faster training within a per
eption/a
tion domain.Future work will involve 
oupling the system to the lower-level sto
hasti
vision system su
h that high-level inferen
es 
an 'pre-�lter' the lower level visionfeatures so as to eliminate per
eptual redundan
y (as determined by the ruleproto
ols) at these levels as well as the higher-levels (for instan
e, by meta-identi�
ation of logi
ally indistinguishable predi
ate labels). In this way, on
e asystem has begun to infer the rules of (say) a 
hess game via an existing set ofvisual primitives (
olour segmentations), it 
an utilise these proto
ols to assistsegmentation of these primitives in a manner that is more proto
ol-appropriate(say, by preferentially segmenting 
hess-pie
es and board-squares).A
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