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Abstract. The COSPAL architecture for autonomous artifical cogni-
tion utilises incremental perception-action learning in order to generate
hierarchically-grounded abstract representations of an agent’s environ-
ment on the basis of its action capabilities. We here give an overview of
the top-level relational module of this architecture.

The first stage of the process hence involves the application of ILP to at-
tempted action outcomes in order to determine the set of generalised
rule protocols governing actions within the agent’s environment (ini-
tially defined via an a priori low-level representation). In the second
stage, imposing certain constraints on legitimate first-order logic induc-
tion permits a compact reparameterisation of the percept space such
that novel perceptual-capabilities are always correlated with novel ac-
tion capabilites. We thereby define a meaningful empirical criterion for
perceptual inference.

Novel perceptual capabilities are of a higher abstract order than the a pri-
ori environment representation, allowing more sophisticated exploratory
action to be taken. Gathering of further exploratory data for rule induc-
tion hence takes place in an iterative cycle. Application of this mechanism
within a simulated 'shape-sorter’ puzzle environment indicates that this
approach significantly accelerates learning of the correct environment
model.

1 Introduction

1.1 Bootstrapped perceptual representations in the COSPAL
cognitive architecture

The aim of EU COSPAL! project is to create an open-ended cognitive architec-
ture for real-world implementation via incremental perception-action learning
[3]. Perception-action learning hence seeks to address the frame-related difficul-
ties? associated with autonomous cognitive agents by the expedient of creating

! COSPAL is an acronym for 'COgnitive Systems using Perception-Action Learning’.

2 The frame problem [7] refers to the open-endedness of logical predication associated
with typical real-world actions. This is caused principally by the domain description
being very much richer than that of the action domain.
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perceptual representations only when they are capable of being differentiated by
the agent’s actions.

When, as in the COSPAL architecture, learning is open-ended (such that
action competences can be built-up in a hierarchical fashion), the adoption of
a perception-action paradigm ensures that the increasingly abstract and sym-
bolic representations at the top-level of the hierarchy are always grounded in
meaningful actions at the lower-level of the hierarchy. We thus spontaneously
infer new perceptual categories in a manner that simultaneously allows for the
continuous refinement of models in the objective domain, in a way that would
be paradoxical or ill-founded for non perception-action learners®. We term this
cognitive bootstrapping [1,2].

Ideally, we would like the higher-levels of representation to include formal
structural entities as well as the stochastic labels associated with the existing
COSPAL visual and motor-control systems. In this way, the system can infer
appropriate perceptual entities in complex rule-based environments (for exam-
ple, a game of chess), by autonomously calibrating the lower-levels of visual
representation (such that, for instance, individual chess-squares and pieces are
preferentially segmented out) on the basis of their significance for the inferred
high-level action protocols (the rules of chess, in this case).

Our goal in the current paper is hence to implement an Inductive Logic
Programming (ILP) module within the COSPAL architecture consistent with
the cognitive bootstrapping ideal. This will involve an iterative three-stage pro-
cess involving: (1) Induction of the logical rules underlying action feasibility,
(2) Remapping of the perceptual variables to best represent the class of legit-
imate actions, (3) Active exploration of the environment on the basis of this
representation.

We will show that the gradual iterative refining of the percept space so as to
best represent feasible actions inherently accelerates the process of learning the
environment protocols, giving the randomised exploratory actions an increas-
ingly ’intentional’ character.

1.2 Experimental Instantiation Within the Shape-Sorter
Environment

The test domain of the COSPAL ILP module is thus a simulated three-dimensional
‘shape-sorter’ puzzle. Here, variously shaped pieces can be positioned freely
around the puzzle’s surface and also placed within unique holes correspond-
ing to their shape; pieces can also be stacked. The active agent embodied within
this environment is a robotic gripper arm capable of positioning itself anywhere
in the volume above the board and shapes.

The actions (representing the a priori motor space) initially available to
the simulated COSPAL agent are thus limited to positional translations of the

3 Without the perception-action relationship object-model errors can simply be sub-
sumed by the perceptual inference.
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gripping arm, which is assumed to perform a ’grasping’ action at the start-
ing position of the attempted translation and a 'releasing’ action at the final
position of the proposed translation (we thus, at this stage, eliminate the pos-
sibility of object rotation). Because of the perception-action equivalence, this a
priori motor-space corresponds exactly to the a prior: perceptual domain, which
is hence characterised as a discretised finite three-dimensional Cartesian space
equipped with topological adjacency relations. Each discrete volumetric position
is associate with a particular label (denoting occupancy by a particular class of
object, though this concept is not yet representable by the agent).

Actions are consequently initially specified by the six-tuple instruction:

'move(xl,yl, 21,22, y2, 22)’ indicating a transition from position (z1,y1, z1)
to position (22,y2, 22), both defined by three-dimensional vectors.

The environment is initially modelled by the injective functional relationship
between the Cartesian space (X,Y, Z) and the set of labels {L}. We will later
seek to model the environment on the basis of affordance; the ability of the agent
to permute this functional relationship. To do this we need to appropriately gen-
eralise the legitimate actions within this environment. Action legitimacy is hence
determined in the most general and least environmentally-specific terms: by the
success or failure of the action to do what was intended. Thus, we assess the
legitimacy of the action 'move(z1,yl, 21,22, y2, 22)’ on the basis of its stability
(the final state must not undergo further changes not induced by the agent) and
its wtility (the final state must be different than the initial state). The movement
from (z1,y1,21) to (22,92, 22) must hence involve the gripping and releasing
of an object at a location in which it is supported. This can only happen if
an (unencumbered) object exists at (x1,y1,z1) and a free position exists at
(22,42, 22), with a supporting surface immediately below it - at (22,42,22 — 1)
on the assumption of a shape ’depth’ of 1.

A supporting surface is thus any one of the following entities: the puzzle, any
other shape, a hole that does not match the moved shape, or a hole that does
match the shape, but has a different orientation to that of the shape itself. (Po-
sitions are discretised so that partial overlaps between object and holes are not
permitted?). The subset of the (|#1| x |y1| x |z1|)? possible transitions within the
a priori motor-space that are legitimately performable are thus approximately
|shapes| x |22| x |y2| in number.

Given that the a priori percept classes existing prior to cognitive bootstrap-
ping are positional occupancy labels, where positional relations are determined
by certain prior adjacency and topology relations, we also require a correspond-
ing a priori structure capable of determining relations between the individual
labels. These take the form of class and relationship predicates capable of dis-
tinguishing: positional occupancy labels, shape-labels, hole-labels, hole-shape la-
bel correspondences, and orientation labels (these are hence in addition to the

* Obviously, a real physical shape-sorter puzzle would be more complex than simplified
representation, permitting, for instance stable, but vertically-tilted states for the
moved object; we are here attempting to ensure that legitimate transitions form a
transparently closed class (a group, mathematically).
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(z,y,2) adjacency labels associated with positional predicates). In specifying
these predicates, it is important to appreciate that the prior perceptual struc-
tures have as yet no action-determined meaning; they act merely as label allo-
cation functions.

In implementing cognitive bootstrapping in this domain our aim is, firstly,
the determination of the legitimate transition rules (ie, the object model), and
secondly the remapping of the a priori percept states such that only the legitimate
action state transitions are perceived. That is, we would like to find a compact
but maximally descriptive percept space in which all states are accessible by
performable actions. We shall demonstrate that this maximally descriptive space
is always of a higher-level of abstraction than the a priori space.

In alternating between perceptual remapping and exploratory action carried
out in terms of the inferred percepts we shall hence also implement a particular
instance of active learning [4], and, as such, will expect to achieve significantly
faster learning within the objective domain (which is to say, faster convergence
on the legitimate action states).

We therefore now turn to a description of the implementation of the simulated
experimental environment in logical terms, and follow this with a description of
the use of inductive logic programming (ILP) for concept generalisation, allow-
ing the remapping of existing percepts into a more compact space in which all
proposed actions are assumed to be achievable.

2 First Order Logical Implementation of the Shape-Sorter

It is evident that an inference system capable both of proposing novel exploratory
actions and of evaluating their outcomes must be one of generalisation. More-
over, this generalisation is, at its highest level, inherently relational given the
nature of the shape-sorter environment: stochastic generalisation is then limited
to the lowest level of the perceptual hierarchy. For the present purposes, we
shall assume ideal stochastic generalisation such that there is no ambiguity (and
no redundancy) amongst the base perceptual classes (shape, position, etc). Our
problem is thus purely one of rule inference’.

Specifically, since the shape-sorter puzzle is protocol-based, our problem is
the inference of action rules that are given in terms of general variables, for which
a particular label constitutes a variable instantiation. We are hence implicitly
considering a first-order logic system, in which a given move represents a logical
proposition that may or may not be fulfillable in terms of the logical axioms
describing the shape-sorter environment. This strongly suggests an implemen-
tation of the shape-sorter within an inductive environment such as PROLOG,
within which the negation or affirmation of movement propositions with respect
to the environment axioms is representable as a goal.

5 In the full implementation, rule inference is permitted to directly influence the
stochastic clustering of the lower hierarchical layer, such as by unifying clusters
with identical logical relations in the manner of [5] (though the mechanism outlined
in [5] does not undertake a comparable perceptual remapping phase).

Proceedings of the ICVS International Cognitive Vision Workshop — ICVW 2007
Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany
This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de




We hence set out to define the shape-sorter puzzle in logical, rather physical
terms, such that it becomes possible to later use Inductive Logic Programming to
infer the logical axioms defining the system given only a few specific exploratory

instances. This, in essence, is to define a semantic parser for the shape-sorter
puzzle in PROLOG.

2.1 PROLOG Implementation

We thus define the shape-sorter protocol in terms of the a priori cognitive
categories given earlier, which we shall render as the PROLOG predicates:
free_position(X,Y, Z), is_hole(X), hole_shape_match(A, B), orientation(X, O)
and position(A, X,Y, Z) (where A and B represent entity labels, X, Y and Z
represent ordinal position labels, and O is an angle label). We also introduce
an elementary topological relation applicable to each of three ordinates indi-
cating directional adjacency: inc_z(X1, X2), inc_y(Y1,Y2) and inc_z(Z1, Z2),
such that, for example, inc_x(X1, X2) is only satisfied when X2 = X1 + 1.
(Angles and positions are hence both finite and discrete, being limited to 10
and 120 = | X| x |Y| x |Z|= 3 x 8 x 5 possibilities, respectively). Again, we em-
phasise that these predicates are labelled so as to assist comprehension; there
are as yet no action-determined meaning associated with the terms. Critically,
these base percept categories have the potential to delineate higher-level concepts
such as the space above an object A via concatenation, ie: position(A, X,Y, Z),
inc_z(Z,7Z1), free_position(X,Y,Z1) (though this is has not yet been made
explicit: this will be the aim of perceptual remapping). The logical rules thus
correspond to the physical rules of the shape-sorter environment in an broadly
intuitive fashion. The rules governing move legitimacy in this simplified shape-
sorter are thus rendered in PROLOG as the three-clause sequence:

move(X1,Y1, 21, X2,Y2, Z2) : —position(A, X1,Y1, Z1), inc_z(Z1, Z3), free_position(X1, Y1, Z3),
free.position (X2, Y2, Z2), inc_z(%4, Z2), position(B, X2, Y 2, Z4), not(hole_shape_match(A, B)), not(A == B).
move(X1,Y1,2Z1,X2,Y2, Z2) : —position(A, X1,Y1, Z1),incz(Z1, Z3), free-position(X1,Y1, Z3),

free-position(X2,Y2, Z2), inc_z(Z4, Z2), position(B, X2,Y2, Z4), is_hole(B), hole_shape_match(A, B),

orientation(A, O1), orientation (B, 02), not(01 == 02).

move(X1,Y1,21,X2,Y2, Z2) : —position(A, X1,Y 1, Z1), inc- (21, Z3), free_position(X1,Y1, Z3),
position(B, X2,Y2, Z2), inc-2(Z2, Z3), free_position(X2, Y2, Z3), is_hole(B), hole_shape-match(A, B),
orientation(A, O1), orientation (B, 02), 01 == 02.

(with commas separating simultaneously satisfied logical constraint conditions,
and distinct clauses separating alternative logical satisfaction constraints.)

3 Inductive Logic Programming in the Shape-Sorter
Domain

We now wish to construct a system capable of inferring a rule set such as the
above from specific examples of exploratory moves along with their (positive or
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negative) outcomes. Since we are in the domain of first-order logic, we are conse-
quently interested in Inductive Logic Programming [6]. A natural implementation
of ILP for our application is Muggleton’s PROGOL. PROGOL operates by con-
structing the most specific clause of the first of the set of positive examples from
which we wish to construct the general rule. The most specific clause is the con-
catenation of all true predication applicable to this positive example, selected
from the range of possible ’body predicate’ mode declarations. Predicates are
then randomly pruned from this clause giving rise to a more generalised set of
clauses which are tested both for their consistency with the negative examples
and their compression of the positive examples. The most effective of these is
then selected as background knowledge and used to remove redundant positive
examples, after which the process begins again with the first of the remaining
positive examples.

Thus, we intend to perform exploratory actions arising from cognitive boot-
strapping within the simulated environment defined by the PROLOG rules given
in section 2.1, attempting inference of them via PROGOL. For the current
demonstrative purposes, rather than considering temporal sequences or multiple
random instantiations of a single simple puzzle configuration, we shall, in obtain-
ing our test data, opt rather to perform single actions on a fixed, but large and
varied, puzzle configuration (slightly simplifying the form of mode declarations).

4 Active Learning Via Cognitive Bootstrapping in the
Relational Domain

In seeking to simultaneously infer optimal object and percept models we shall
hence implement a system of iterative alternation between the exploratory and
the environmental (object-model) inference phases. Cognitive bootstrapping then
stands as an intermediary between these two phases. Specifically, it takes the cur-
rent environmental inference (that is, the attempted inference via PROGOL of
the shape-sorter PROLOG rules when given the cumulative outcomes of all of
the previous exploratory moves), and seeks to redefine the percept space in a
manner appropriate to this newly-assumed environmental model. This remapped
percept space then, in turn, suggests a new set of exploratory moves (in effect,
the percept remapping re-parameterises the environmental model), thereby test-
ing both the environmental and perceptual hypotheses at the same time, while
overcoming the potential paradox involved in their interdependent definitions.
We now look at exactly how this perceptual remapping is achieved:

4.1 Remapping of the Percept Space

Suppose that the application of PROGOL to the cumulative exploratory data
has given rise to the inference of a partially accurate rule. The following is a
typical example of the sort of rule infered after four legitimate exploratory action
examples have been collated (along with very many more negative exploratory
action examples):
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move(X1,Y1,Z1,X2,Y2, Z2) : —position(A, X1,Y1,Z1), inc-z(Z3, Z2), position(B, X2,Y 2, Z3).

(This corresponds to the constraint that an object must be placed on top of
another object)®.

We notice that this rule has introduced three new variables (A, B and Z3)
beyond the existing six variables (X1,Y1,Z1, X2, Y2, and Z2) used to spec-
ify the a priori motor-space. As a consequence of the nature of PROGOL, the
predicate terms within the body of the above clause must declared with a spe-
cific input/output structure. For instance, the body mode declaration for the
'position’ predicate is : —modeb(1, position(—entity, +xint, +yint, +zint)), in-
dicating that for a given 3-D positional input, a single entity class object label
is given as output. However, we have so specified the mode declarations that
there is also a ’position’ predicate body mode declaration given with exactly
opposite input/output structure (which can, if necessary, be differentiated via
an appropriate suffix). Furthermore, in consequence of the particular design of
the shape-sorter logical protocols, this symmetry is common to all of the predi-
cates that have both an input and an output (so that, for instance, an occupied
position always defines a unique shape label, while a given shape label always
defines a unique position). We have thus adopted a strictly functional definition
of predication within the mode declarations.

This will not necessarily be the case within general logical environments;
however, in the case of physical environments such as the shape-sorter this sym-
metry permits us to invert the input/output structure. Hence, visually rendering
the clause I/O structure (as in figure 1) and reading the diagram from left to
right, it becomes apparent that the six initial input variables are mapped to
two final output variables. Consequently, reading the vertex structure from right
to left after having imposed opposite input/output structure in the individual
predicates permits us to see that the clause structure undergoes a transition
from the two input variables A and B, to the six original variables. In so far as
it is permissable to regard variable instantiations as ordinates, it is hence pos-
sible to re-parameterise the original six-dimensional space as a two-dimensional
space characterising the space of possible moves. In doing so we have lost none
of the posible instatiations of legitimate actions: we have merely removed all of
the logical redundancy. This then is the proposed percept space, where we have,
in choosing the observables as {A and B} rather than {X1,Y1,71,X2,Y2,
and Z2}, effectively re-conceived the percept space in the higher-level terms of
objects and surfaces rather than the lower-level concept of positions. We thus
redefine the six dimensional action space: move(X1,Y1,Z1, X2, Y2, Z2) as the
two-dimensional space: move(A, B). Randomised actions in the reconsituted per-
cept space are thus now of the ’put object A onto surface B’ type, as opposed
to the 'move gripper from (X1,Y1,71) to (X2,Y2, Z2) type; that is, they are
much more ’intentional’. In algorithmic terms, this percept remapping is simply
a case of establishing which of the newly introduced variables are non-nested
with respect to the ensemble of sets of variables defined by the various predi-

® This is in fact sufficient to correctly eliminate the vast majority of the (|z1] x |y1| x
|z1])? proposable transitions in the a priori space.
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Fig. 1. Example schematic of clause structure.

cate groupings. This is the equivalent of determining which of newly introduced
variables appears in only one of the predicate groupings when predicates with
only input or output structures are excluded: individual clauses are assumed to
occupy separate spaces.

4.2 Active and Passive Exploratory Phases

While the above method might thus be expected to increase the speed of conver-
gence on the final object and percept models, it is evidently possible that it can
cause convergence on a local, rather than global minimum, represented by an
accurately inferred subset of the totality of permissable moves. Hence, we shall
alternate the cognitive bootstrapping phase with a random exploratory phase
that makes no high-level perceptual assumptions’. The active phase thus, in ef-
fect, acts to focus on those areas deemed permissable by the inferred rule such
that data capable of falsifying it is obtained very much more quickly than would
otherwise be the case (PROGOL requires only one instance to falsify a hypoth-
esis). The random phase then acts to collect data that is indicative of general
environmental rules, of which the active phase is perhaps investigating only a
subset. The combination of the two approaches hence produces an exploratory
method capable of rapidly ascending performance gradients, while at the same
time undergoing random perturbations capable of finding alternative, perhaps
more global, gradients to ascend.

As a calibration for the above method of alternation (which might be consid-
ered a primitive form of simulated annealing), we also provide a purely passive-
learner in which PROGOL inference is applied only to random exploratory ac-
tions cumulatively derived from the a priori percept space (X1, Y1, Z1, X2, Y2,
72). For both types of learner, 10 exploratory actions are undertaken at each
iteration.

" Note that there are potentially more efficient variants on this approach, such as
embarking on a random exploratory phase only after active percept learning per-
formance has reached a plateau (if some local criterion could be established to
determine this, such as compressive capability with respect to the cumulative ex-
ploratory results). For this proof-of-concept demonstration, however, we opt for the
most straightforward approach.
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5 Results and conclusions

5.1 Experimental findings

We give the average result of ten output runs (commencing after an initial rule-
induction of 96% accuracy) in figure 2. The ratio of passive cycles to active
cycles in the cognitive bootstrap learner is 5 to 1 (corresponding to 10 attempted
actions during the cognitive bootstrap cycle followed by 50 actions during the
random exploration cycle); this is compared with a purely passive learner. It
is evident that the active learning procedure achieves convergence considerably
faster than the passive learner, converging on a significantly higher accuracy
figure at the extremity of the tested range.

Defining, more accurately, the respective absolute performance values on
which the learners converge as the average performance value after they have
come within 1 percent of their maximum values, we see that the performance
figures are 99.57 percent for the active learner and 99.28 percent for the passive
learner.
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Fig. 2. Accuracy vs iteration number for the cogntive boostrap and passive learners.

5.2 Conclusions

The outlined experiment has thus demonstrated how it is possible to build a
relational perception-action learner for the COSPAL architecture capable of si-
multaneously optimising a percept-domain while optimising its model of the
external world described in terms of these percepts. Thus, cognitive bootstrap-
ping aims to creates a space of perceived action possibilities that are always
(in principle) realisable, and where redundant action possibilities are eliminated
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from perception. The outlined method hence constitutes an artifical realisation
of Phenomenologists’ goal (eg [8]) of relocating the concepts of representation
and symbolic meaning in the interaction between an agent’s capabilities and the
world, as opposed having them specified by purely internal states (ie ’subjec-
tively’), as they are in conventional machine vision.

In carrying-out this instantiation of relational cognitive bootstrapping in a
COSPAL-like environment, we have also found evidence that, in so far as it may
be regarded as form of active learning (that is, when the remapping of the percept
space directly suggests novel exploratory actions), cognitive bootstrapping can
give rise to significantly faster training within a perception/action domain.

Future work will involve coupling the system to the lower-level stochastic
vision system such that high-level inferences can ’pre-filter’ the lower level vision
features so as to eliminate perceptual redundancy (as determined by the rule
protocols) at these levels as well as the higher-levels (for instance, by meta-
identification of logically indistinguishable predicate labels). In this way, once a
system has begun to infer the rules of (say) a chess game via an existing set of
visual primitives (colour segmentations), it can utilise these protocols to assist
segmentation of these primitives in a manner that is more protocol-appropriate
(say, by preferentially segmenting chess-pieces and board-squares).
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