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Abstract. This paper describes a method to photometrically align reg-
istered and overlapping images which have been subject to vignetting (ra-
dial light falloff), exposure variations, white balance variation and non-
linear camera response. Applications include estimation of vignetting and
camera response; vignetting and exposure compensation for image im-
age mosaicing; and creation of high dynamic range mosaics. Compared
to previous work white balance changes can be compensated and a com-
putationally efficient algorithm is presented. The method is evaluated
with synthetic and real images and is shown to produce better results
than comparable methods.

1 Introduction

Grey or colour values captured by most digital and film cameras are related
to the scene irradiance through various transformations. The most important
ones are the uneven illumination caused by vignetting and a non-linear camera
response function. Many applications require the recovery of irradiance, for ex-
ample irradiance based reconstruction mechanisms, such as Shape from Shading,
and Photoconsistency. Image mosaicing is also strongly affected by vignetting.
Even if advanced image blending mechanisms are applied [1,2,3], residuals of
the vignetting are noticeable as wavy brightness variations, especially in blue
sky. Another important use case is the creation of high dynamic range mosaics,
where camera response, exposure and vignetting should to be compensated for.

Vignetting is usually corrected by dividing the image by a carefully acquired
flat field image. For wide angle or fisheye lenses, this method is not very prac-
tical. Additionally knowledge of the camera response function is required for
the flatfield correction, which is often unknown if consumer cameras are used.
Since vignetting and non-linear camera response lead to spatially varying grey
value measurements, they can be calibrated and corrected using grey level pairs
extracted from partially overlapping images [1,4]. Litvinov and Schechner [4] es-
timate non-parametric models of both vignetting and camera response, resulting
in a high number of unknowns. Consequently, the algorithm has only been evalu-
ated on image sequences with an overlap of approximately 70-80 percent between
consecutive images, requiring many images for the creation of a mosaic. The pro-
posed method is closely related to [1], since it uses similar models for vignetting
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and response curve. The vignetting behaviour is modelled by a radial polynomial
and camera response function is modelled by the first 5 components of a PCA
basis of response functions [5]. Previous work [1,4] on vignetting and exposure
correction has assumed equal behaviour of all colour channels, while the proposed
approach can correct images with different white balance settings. Goldman and
Chen [1] iteratively alternate between vignetting and response estimation, and
irradiance estimation. Both require optimisation steps non-linear optimisation,
leading to a computationally expensive and slowly converging method. In con-
trast, the proposed method avoids the direct estimation of scene irradiance by
minimising the grey value transfer error between two images, resulting in a min-
imisation problem with a much lower number of parameters and significantly
reduced computation time.

2 Image formation

The image formation used in the paper models how the scene radiance L is re-
lated to grey value B measured by a camera. We describe the imaging process
using precise radiometric terms. The image irradiance F is proportional to the
scene radiance, and given by £ = PL, where P is a spatially varying attenua-
tion due to vignetting and other effects of the optical system. For simple optical
systems, P = mcos* §/k?, where 6 is the angle between the ray of sight and the
principle ray from the optical axis and k is the aperture value [6]. The spatially
variant cos* @ term only applies to simple lenses implementing a central projec-
tion. For real lenses the spatially variant attenuation often strongly depends on
the aperture value k, and needs to be calibrated for each camera setting. We
describe the spatially varying attenuation caused by the optical system with a
function M.

The irradiance E incident on the image plane is then integrated at each pixel
on the imaging sensor with an exposure time ¢, resulting in an measurement of
the energy ). After scaling the measured energy ) with the a gain factor s,
the resulting value is subject to a camera response function f. The grey value
measured by the camera is thus given by!:

B=f(eML). (1)

For brevity, it is convenient to define an effective exposure e = 7st/k?, which
includes all constant exposure parameters. While scientific cameras usually have
a linear response function, most consumer cameras apply a non-linear response
function, for example to archive a perceptually uniform encoding. Except for
exotic cameras, the camera response f is a monotonically increasing function,
and an inverse camera response function g = f~! exists. The radiance of a scene

! Real cameras might also suffer from various other systematic effects, for example
dark current, as well as spatial and temperature dependent gain variations. These
effects are out of the scope of this paper.
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point can then be reconstructed from the grey value B by solving Eq. (1) for L:

g(B)
=22 2)

For colour cameras, we assume that the exposure e of a channel 7 is scaled by
a white balance factor w; and that the same response function f is applied to
each channel.

B = f(weML) 3)
To avoid ambiguity between e and w;, we fix the white balance factor of the
green channel to be unity.

2.1 Grey value transfer function

Assume two images of a static scene have been captured with different exposure,
or different camera orientation. For the same point, two different grey values
B; and By are measured due to the different exposures or a spatially varying
vignetting term M. We assume that the camera position does not change, and
thus the same radiance L is captured by the camera?. This results in the following

constraint:
elM(xl) 62M(X2)
Note that M depends on the positions x; and x5 of the corresponding points in

the images, and thus cannot be cancelled. By solving equation Eq. (4) for By,
we arrive at the grey value transfer function 7:

B = (52) =  (9(52) 0
By estimating the function 7, it is possible to determine values for the expo-
sures, response curve and vignetting behaviour.

2.2 Parametric models of response curve and vignetting

The camera response function can be represented either by non-parametric [7,8,4]
or parametric models [9,5]. In this paper we have used the empirical model of
response (EMoR) of Grossmann and Nayar [5], which is a PCA basis created
from 201 response curves sampled from different films and cameras. Compared
to polynomial and non-parametric models, it contains strong information about
the typical shape of camera response curves and suffers less from over fitting and
approximation problems. The response curve can then be computed with

f=fod ah, (6)
1

2 If the camera is moved, different radiance values will be captured for objects with
non-Lambertian reflectance.
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where fjy is a mean response curve and h; is the [th principal component of all
the response functions considered in the EMoR model. The parameters «; define
the shape of the response curve.

The vignetting M of most lenses can be modelled well with a radial function
[1], in this paper we use a radial polynomial:

M = 3175 + Bort + Bar? + 1. (7)

Here, 7 = ||c — x||2 is the euclidean distance of a point x in the image plane
from the from the centre of vignetting c. When using a perfect lenses and camera
system, the vignetting centre should coincide with the image centre, however in
practice it usually does not, probably due to mounting and assembly tolerances.

3 Estimation of vignetting and exposure from overlapping
images

Previous work [4] for the estimation of vignetting, response and exposure are
based on directly minimising the error between the two radiance values g;(Bj)
and go(Bs) recovered from the grey values By and By measured at a correspond-
ing scene point using a linear method in log space. This formulation has two
trivial, physically non-plausible solutions with e; = e3 = 0, and g = 7 = const.
In order to avoid these solutions, soft constraints on shape and smoothness of
the response and vignetting behaviour are used. The method presented in [1]
minimises By = f1(L) and By = fo(L). Since the scene radiance L not known,
alternative non-linear estimation steps for of a large number of radiance values
L and the vignetting, exposure and response parameters are required, leading
to a computationally expensive method.

In this paper we propose to estimate the parameters of the grey value transfer
function 7 (cf. Eq. (5)) directly. This avoids explicit modelling of the unknown
scene radiance L. Grossberg and Nayar [10] use the gray value transfer function
to estimate the camera response fuction, but do not consider vignetting. The
resulting error term is given by

e:d(Bl *T(BQ)), (8)

where d is a distance metric, for example the Euclidean norm. Compared to
the previously proposed approaches [1,4], our algorithm does not suffer from
physically not plausible trivial solutions and only estimates a small number of
parameters. The calculated error e is only meaningful if both B; and By are well
exposed. As shown in [10] and [4], the estimated parameters are subject to an
exponential ambiguity, if exposure e and the camera response parameters « are
recovered simultaneously.

In the experiments, we have used the Levenberg-Marquardt [11] algorithm to
minimise Eq. (8) using least mean squares for all corresponding points between
two images. Ordinary least mean squares assumes that only B; is subject to
Gaussian noise, while Bs is assumed to be noise free. For the given problem, both
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B; and B; are subject to noise, and an errors-in-variables estimation should be
used to obtain an optimal solution. For the results presented in this paper we
have used a symmetric error term d(B; — 7By) + d(By — 771 By).

This formulation does not enforce the monotonicity of the camera response.
In practice, this is not a problem as long as the measured grey values By and Bs
are not heavily corrupted by outliers. We have found experimentally that for pho-
tos with a high proportion of outliers (> 5%), non-monotonous response curves
can be estimated by our algorithm. Based on our assumption of monotously
increasing response curves, we require % to be positive. Assuming a discrete re-
sponse curve f defined for grey levels between 0 and 255, a monotonous response
curve can be enforced by using

255

em = Y (min (f(i) - f(i = 1),0))%, (9)

i=1

as an additional constraint in the objective function. While using a penalty
function is not the most effective way to enforce this type of constraint, our ex-
periments have shown that Eq. (9) can be effectively used to enforce monotonous
response functions without affecting the accuracy of the recovered parameters
for scenarios with a reasonable amount of outliers.

Given a set of IV corresponding grey values By and Bs, the parameters e, p,
w, and « can be estimated by minimising the error term

N
e=Nep + »_d(Bj — 7B;2) +d(Biz — 7' Bi) (10)

using the Levenberg-Marquardt method[11]. We have explored the use of the
Euclidean norm d(z) = 2 and the Huber M-estimator

fL'2 X o
d(x){ , 17< (1)

20|z| —0® |z| >0

4 Application scenarios

The radiometric calibration approach described above is very general since it
includes the main parameters influencing the radiance to image grey value trans-
formation parameters. The method has applications in many areas of computer
vision, graphics and computational photography.

Many computer and machine vision algorithms, for example 3D shape re-
construction using Shape from Shading or Photoconsistency, expect grey values
proportional to the scene radiance L. Even if cameras with linear response func-
tion are used, vignetting will lead to an effectively non-linear response across the
image. This is especially true if wide angle lenses and large apertures are used,
for which it is hard to capture sound flatfield images to correct the vignetting.
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The presented method can be used to recover a good approximation of the true
vignetting behaviour by analysing as few as 3 overlapping registered images.

Many applications involve the merging of multiple images into a single image.
The most prominent example is Image Mosaicing and the creation of panoramic
images. In this context, vignetting and exposure differences will lead to grey value
mismatches between overlapping images, which lead aesthetically unpleasable re-
sults or complicate analysis of the images. In many of these applications, either
the response curve of the camera or the exposure of the images are known, al-
lowing an unambiguous determination of the remaining, unknown parameters.
For artistic images, the recovery of scene radiance is often not required or even
desired. In this case it is often advantageous to reapply the estimated camera
response curve after correction of exposure, white balance and vignetting differ-
ences, thus sidestepping the exponential ambiguity [1].

5 Experimental results

5.1 Extraction of corresponding points

The estimation of the response and vignetting parameters with Eq. (5) requires
the grey value of corresponding points. The panoramic images used for the ex-
amples were aligned geometrically using the Hugin software. After registration,
corresponding point pairs between the overlapping images are extracted. For real
images sequence there will always be misregistration, either due to movement in
the scene or camera movement. By choosing corresponding points in areas with
low gradients, the number of outliers caused by these small missregistrations can
be reduced. Extrapolation problems of the polynomial vignetting term can be
avoided by using corresponding points that are roughly uniformly distributed
with respect to their radius r.

We sample a set of 5n random points and bin them according to their distance
from the image centre. The points in each of the 10 bins used are sorted by the
sum of the absolute gradient magnitude in the source images. From each bin, only
the first n/10 points with the lowest gradient values are used for the estimation.
This procedure results in corresponding points that are both localised in areas
with low image gradients and roughly uniformly distributed with respect to their
distance from the image centre.

5.2 Synthetic example

We have analysed the performance of the algorithm using 6 synthetic images
that have been extracted from a single panorama, and were transformed into
synthetic images with known camera response, exposure and vignetting param-
eters. After adding Gaussian noise with ¢ = 2 grey levels and random outliers,
which have been simulated by replacing some simulated grey values with uni-
formly distributed random numbers. Finally, the synthetic images have been
quantised to 8 bit.
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Fig. 1. Evaluation of the robustness on a synthetic 6 image panorama. Left:
Exposure error over number of outliers, with 300 corresponding points. Right:
Exposure error over number of grey value pairs, with 10% of outliers. The error
bars indicate the maximum and minimum deviations against from the ground
truth measured over 30 simulations.

The proposed algorithm has been used to determine the accuracy of the
estimated parameters and to investigate the behaviour of the algorithm with
respect to the number of required grey value pairs and the choice of the norm d in
Eq. 10. Each experiment was repeated 30 times. Figure 1 illustrates that contrary
to [1], we found that using the Huber M-estimator with ¢ = 5 grey values
results in significantly improved robustness, if the data contains outliers. For
larger numbers of outliers, the squared error does not only produce results with
larger errors (as expected), but also requires more iterations until convergence.
Figure 1 shows the reconstruction error for an increasing amount of grey values
pairs. As expected the accuracy of the solution improves if more correspondences
are used. If correspondences without outliers and Gaussian noise are used both
approaches produce similar results.

5.3 Real examples

We have applied our method to multiple panoramic images sequences, captured
with different cameras and under different conditions. Figure 2 shows a panorama
consisting of 61 image, captured using a Canon 5D with a manual focus Yashica
300mm lens. The strong vignetting behaviour is corrected almost perfectly. The
estimation of vignetting and response curve took approximately 7 seconds, in-
cluding the time to extract 5000 corresponding points. The panorama shown in
Fig. 3 has been captured in aperture priority mode, resulting in images captured
with variable exposure time but fixed aperture. The images have been published
in [1], and can be used to compare our result to the previous approach. Some
very minor seams are still visible, but these can be easily removed by using image
blending [2]. Figure 4 shows a 360° x 180° panorama created from 60 images cap-
tured with a consumer camera in fully automatic mode. In addition to exposure
time changes, the aperture varied between 3.5 and £5.6. The remaining visible
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(a) No correction (b) After vignetting correction

Fig. 2. Venice sequence, 61 images captured with fixed exposure and white bal-
ance. As seen in a), the used lens suffers strongly from vignetting. Images cour-
tesy of Jeffrey Martin, http://www.prague360.com/

seams in the sky caused by moving clouds. This scene also shows that the pro-
posed algorithm can robustly handle images with some moving objects, as pre-
dicted by the synthetic analysis. High resolution images and further evaluation
with respect to image blending are available at http://hugin.sf.net/tech.

6 Summary and conclusion

We have proposed a method to estimate vignetting, exposure, camera response
and white balance from overlapping images. The method has been evaluated
on synthetic and real images. It produces accurate results and can be used for
vignetting, exposure and colour correction in image mosaicing. If either response
or exposure is known, the scene radiance can be recovered. Compared to previous
approaches, the method can cope with white balance changes, requires less dense
data and has a favourable computational complexity. The described method is
implemented in the open source panorama creation software Hugin, available at
http://hugin.sf.net.
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(b) After vignetting, exposure and white balance correction

Fig. 4. Spherical panorama created consisting of 60 images captured with a
consumer camera in automatic exposure mode. Some seams are still visible,
probably due to different aperture settings. Images courtesy of Alexandre Duret-
Lutz, http://www.flickr.com/photos/gadl/
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