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Abstract. We present a foveated vision system for robust person de-
tection in wide field of view. The system consists of an omidirectional
camera for people detection in a wide field of view and a pan-tilt camera
that can focus on a particular location. Combining the information from
both cameras leads to improved people detection. The people detection
is based on human body part detectors and a probabilistic model of the
spatial arrangement of the parts. The representation is robust to par-
tial occlusions, part detector false alarms and missed detections of body
parts. We also show how to use the fact that the persons walk on a known
ground plane to increase the efficiency and reliability of the detection.

1 Introduction

Person detection from images is a widely studied problem, e.g. [5, 8, 12, 9]. The
part-based object representations, e.g. [11, 3], often lead to higher recognition
performance when compared to algorithms considering a complex object as a
whole. The second important advantage of the part-based approach is it relies
on object parts and therefore it is much more robust to partial occlusions. People
detection by detecting body parts was considered a number of times. Seemann
et al. [8] use SIFT based part detectors to detect people but do not model part
occlusions. Wu and Nevatia [12] describe the part occlusions but the occlusion
probabilities and part positions are learned in a supervised manner.

In this paper we present part based people detection similar to [11, 4]. An
advantage of having a proper probabilistic model is that, after constructing the
part detectors, the part arrangement and occlusion probabilities can be automat-
ically learned from unlabelled images. We propose to use the Haar-like feature
cascade classifier of Viola and Jones [10] to rapidly detect human body parts
at various scales instead of the salient regions used before [11, 4]. In the exper-
imental section we show that the probabilistic combination of part detections
performs much better than each part separately and better than the Haar-like
feature cascade classifier applied to the whole body. We also propose how to use
the fact that the persons walk on a known floor plane to detect people more
efficiently. Furthermore, in this paper we propose a vision system for reliable
and robust people detection in wide field of view. The system consists of an
omidirectional camera that delivers low-resolution wide field of view images and
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Fig. 1. The camera system construction. The omnicam has 360◦ horizontal field of
view. The vertical viewing angle of the omnicam is 90◦ with 30◦ maximal upward
angle. The pan-tilt unit can tilt 102◦ and pan 189◦. We show example views from the
two cameras on the left. We indicate the corner points corresponding to the floor tiles
that are used for estimating the position of the cameras with respect to the floor plane.

a pan-tilt camera that can focus on a particular location. We show how our
part-based model can be used to combine part detections from the two cameras.

This paper is organized as follows. We start with describing the camera sys-
tem we use and the calibration of the cameras in Section 2. In Sections 3 and
4 we present part-based probabilistic model. The results from our experiments
are in Section 5. Conclusions are in Section 6.

2 Description of the vision system

Our system consists of two cameras. A side view of the system is presented
in Figure 1. The omnidirectional camera consists of a regular camera and a
hyperbolic shape mirror in front of the camera. The camera delivers 1024× 768
color images. The mirror is properly placed with respect to the camera lens
and the camera with the mirror can be described using the standard central
camera model. The omnicam images can be used for wide field of view people
detection. However, because of the wide field of view the resolution is low for
far away objects. Therefore we add a pan-tilt camera that can deliver higher
resolution images for particular positions. This resambles biologically inspired
systems [1, 2]. The system is intended to be used on a mobile robot that should
interact with people, see Figure 4. The pan-tilt unit is placed on top of the
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omnidirectional camera as depicted in Figure 1. When on our mobile robot,
the pan-tilt camera is high enough to have good viewing position for observing
human face. Additionally a moving pan-tilt unit can be used to make people
aware of the current point of attention of the system[2]. Disadvantages of such
construction are: a small part of the omnicam image is occluded by the pan-
tilt camera data cable; and the pan-tilt unit can be shaking during the robot
movements.

2.1 Calibration

First the intrinsic parameters of the both cameras are estimated. Next, we es-
timate the 3D position of the both cameras with respect to the floor plane, see
Figure 4. This is achieved by identifying the same known 3D points in both cam-
eras. In our case we used the corners of the floor tiles as shown in Figure 1. The
pose of the both cameras is estimated then by minimizing the reprojection errors
of the selected points [6]. The camera pose for the pan-tilt unit is estimated for
the ”maximal tilt down” and ”neutral pan” camera position and we rely on the
pan-tilt angles reported by the camera pan-tilt mechanism.

3 Probabilistic part-based person model

The human body will be represented as a collection of P body parts. The 2D
image position of the p-th part will be denoted by xp = (xp, yp). We will use the
Gaussian distribution for the arrangement of the body parts:

pshape(x) = N (x; µ, Σ) (1)

where x =
(

x1 ... xP

)

is a 2P long vector containing all the 2D part positions, µ
is the mean and Σ is a (2P )× (2P ) covariance matrix. If the covariance matrix
is diagonal than this model can be seen as describing ”string-like” constraints
between the body-part positions [3].

3.1 Part detection

torso legs full torso face

Part detections – omnicam Part detections – pan-tilt camera

Fig. 2. Example body part detections with some false detections.
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We use a set of Haar-like-feature classifiers to detect various human body
parts [10]. In this paper the classifiers are trained on face, upper body, lower body
and full body images. The upper body, lower body and full body detectors are
applied to the omnicam images and in pan tilt images we detect face and upper
body. This gives in total P = 5 parts, see Figure 2. Let Np denote the number
of detections of part p. The positions of all detected parts can be summarized
in a data structure:

X =









x1,1 x1,2 ... x1,N1

x2,1 x2,2 ... ... x2,N2

... ... ... ... ...
xP,1 ... xP,NP









(2)

with one row per part and where each row contains information about the detec-
tions of the corresponding body part. The element xp,j contains the 2D image
position (xp,j , yp,j) of the j-th detection of the p-th part. The rows of X can
have different lengths and some might be empty if that part is not detected.

3.2 Missing detections and clutter

From an image we will extract a collection of parts X some of which might be
false detections. To indicate which detections correspond to the object we will
use vector h with element hp = j, j > 0, indicating that the j-th detection of
the p-th part xp,j belongs to the object. Other detections of that part are false
detections. Given h the shape of the object is composed of the corresponding
detections x =

(

x1,h1
... xP,hP

)

. The detections that belong to the background
clutter are denoted as xbg.

It is also possible that all detections are false detections or the part was
not detected at all. We use hi = 0 to indicate this. These parts are considered
as missing data. We will denote the set of missing parts as xm and the set of
observed parts as xo. The probabilistic model of the arrangement of the body
parts (3) will be written as:

pshape(x) = pshape(x
o,xm) (3)

For a collection of detected parts we do not know h and it is also treated
as missing (hidden) data. We will call h the ’hypothesis’ vector. If there are Np

detections for part p, the number of possible hypotheses is
∏P

p (Np + 1).

3.3 Probabilistic model

A probabilistic model that considers the possibility of part detector false alarms
and missed detections of body parts of a person can be written as:

p(X ,xm,h) = p(X ,xm|h)p(h) (4)

where xm are the missing data determined by h.
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In order to define p(h) we will introduce two auxiliary variables b and n.
The variable b = sign(h) is a binary vector that denotes which parts have
been detected and which not. The value of the element np ≤ Np of the vector n

represents the number of detections of part p that are assigned to the background
clutter. We can now write the joint distribution (4) as:

p(X ,xm,h,n,b) = p(X ,xm|h)p(h|n,b)p(n)p(b) (5)

where we add the two auxiliary variables b and n and assume independence
between them. Furthermore, we have:

p(X ,xm|h) = pshape(x
o,xm)pbg(x

bg) (6)

where the observed parts xo, the missing parts xm and the false detections
from clutter xbg correspond to the hypothesis h and the pbg(x

bg) describes the
distribution of the false detections. We will assume uniform density for the false
detections:

pbg(x
bg) =

P
∏

p=1

(1/A)np . (7)

where A is the total image area and np ≤ Np is the element from the vector n.
The probability p(b) describing the presence or absence of parts is modelled

as an explicit table of joint probabilities. Each part can be either detected or
not, so there are in total 2P possible combinations that are considered in p(b).

We assume here that the background part detections n are independent of
each other and modelled using Poisson distribution with mean Mp [11]. Dif-
ferent Mp-s for different parts admit different detector statistics. The Poisson
parameter will be denoted by vector M =

(

M1 ... MP

)

.
The density p(h|n,b) is defined as:

p(h|n,b) =

{

1/|H(b,n)| if hǫH(b,n),

0 otherwise.
(8)

where H(b,n) is the set of all hypotheses consistent with the values of b and n.
Here |H(b,n)| denotes the total number all consistent part assignment hypothe-
ses. This expresses that these hypotheses are considered equally likely.

3.4 Learning model parameters

The density distribution (5) will have the following set of parameters Ω =
{µ, Σ, p(b),M}. Therefore we can write the distribution (5) also as:

p(X ,xm,h) = p(X ,xm,h|Ω) (9)

The likelihood of a collection of detected parts X is obtained by integrating
over the hidden hypotheses h and the missing parts:

p(X|Ω) =
∑

all possible h

∫

xm

p(X ,xm,h|Ω). (10)
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Fig. 3. Example images from the data set used to train the probabilistic part arrange-
ment model. For each part we present its mean position contained in the parameter µ.
The ellipse represents the 1-sigma uncertainty of the part position as described by the
diagonal elements of the covariance matrix Σ. Here green color represents head, blue
are legs and red is the full body detector.

We use Gaussian distribution to describe the arrangement of the body parts.
Integrating over the missing parts xm for the Gaussian distribution can be per-
formed in closed form.

To estimate the parameters of the model we start from a set of L aligned
images of persons. The part detectors are applied to each image. The collection
of detected parts for i-th image will be denoted as Xi. The maximum likelihood
estimate of the parameters Ω is computed by maximizing the likelihood of the
data:

∏L

i p(Xi|Ω) Once we have the part detectors, the part arrangement pa-
rameters are estimated using expectation maximization algorithm from a set of
unlabelled images [11].

3.5 Detection

Let us denote the maximum likelihood parameters learned from a set of images
of persons as Ωperson, see Figure 3. The parameters of the model can be learned
also for a set of random images of the background from the environment. These
parameters will be denoted as Ωbg. We are now presented with a new image and
extracted the set of detected parts X . The image is either an image of a person
or some background image:

p(X ) = p(X|Person)p(Person) + p(X|BG)p(BG) (11)

where p(Person) and p(BG) are unknown a priori probabilities that the image is
an image of a person or background. The a posteriori probability that an image
is an image of a person is:

p(Person|X ) =
p(X|Person)p(Person)

p(X )
≈

p(X|Ωperson)p(Person)

p(X|Ωperson)p(Person) + p(X|Ωbg)p(BG)
(12)
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Fig. 4. Schematic representation of our Nomad robot with the camera system. Given
a floor plane position of the person, the regions of interest can be extracted from both
camera images as illustrated on the right.

The last step above is an approximation since we use the maximum likelihood
estimates for the model parameters Ωperson and Ωbg instead of integrating over
all possible parameter values. Calculating p(X|Ω) is done using (10).

4 People detection with floor plane constraint

In practice we do not know where the person is in a new image and at which scale.
Therefore, person detection would standardly involve scanning the image across
many possible image positions and scales. This is computationally expensive and
often can be done more efficiently using the floor plane constraint.

4.1 Floor plane constraint

We assume that people walk over a flat ground floor surface. This is in general
true for most man-made environments. Therefore we will define a set of possible
2D positions Tt of the person on the floor plane. In our experiments we consider
a 10m × 10m square area around the robot on the ground floor and a grid of
possible positions at every 10cm. This gives a total of 10000 possible ground
floor points Tt. Then, instead of scanning an image across all possible image
positions and scales we will just scan all predefined ground floor points Tt.

We used data from the National Center for Health Statistics (www.cdc.gov/
nchs/). For adult humans, the mean height is 1.7m with a standard deviation
of 0.085m. We define maximal height of human to be mean plus three standard
deviations and the width to be 1/2 of the height. Using these dimensions and
having a calibrated camera, each Tt defines a rectangle region of interest in an
image, see Figure 4. Keeping only the parts within the possible regions of interest
greatly reduces the number of parts that need to be considered, Figure 5.
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Fig. 5. Body part detection (top). With the floor plane contraint (below).

4.2 People detection

Each 2D floor position Tt has a set of parts X within the corresponding region
of interest of the image. The likelihood of the parts p(X ,xm,h|Ωperson, Tt) for
the given position Tt is computed by (5) and we can write:

p(X ,xm,h, Tt|Ωperson) = p(X ,xm,h|Ωperson, Tt)p(Tt) (13)

where p(Tt) is some prior distribution on the possible person locations on the
floor plane. The region of interest image is either an image of a person or some
background image and we can write:

p(Person|X , Tt) ≈

p(X , Tt|Ωperson)p(Person)

p(X , Tt|Ωperson)p(Person) + p(X , Tt|Ωbg)p(BG)
(14)

This is an approximation since we use the maximum likelihood estimates for
the model parameters Ωperson and Ωbg instead of integrating over all possible
parameter values. Calculating p(X , Tt|Ω) for a given Tt is done using (10). We
assume a priori probabilities to be equal p(Person) = p(BG) = 0.5 and decide
that there is a person at position Tt if p(Person|X , Tt) > 0.5.

Since p(Person|X , Tt) is computed at a dense grid of ground points, it often
happens that p(Person|X , Tt) has a large value for a number of ground points
around the position where the person actually is. Therefore the persons are
detected as the local maxima of the p(Person|X , Tt) above the threshold value.

5 Experiments

5.1 Recognition results

The Haar-like-feature based part detectors we used in our experiments were
trained on the MIT pedestrian dataset [7] and are available in the Intel OpenCV
library. We also used the face detector provided in the Intel library.

For training our part-based model we made another data set of 400 low
resolution images of people cut out of panoramic images and from pan-tilt camera
images. The images are obtained by our robot by driving around our office
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Fig. 6. Recognition Receiver Operator Curves.

space. We used 200 images for learning the model parameters and the other 200
images for testing the recognition results. We randomly cut out also a set of
1200 background images. The results in Figure 6 show that large improvements
can be achieved if the part detectors are combined. Combining the images from
both cameras further improves the results.

5.2 Recognition from a moving robot

The algorithm presented in the previous section is implemented on our robot. In
Figure 7 we present a few panoramic images with the detection results. The im-
ages were obtained at various places around our building. The detection accuracy
is much better than the single part detectors.

The first stage of the algorithm where the body parts are detected is the
most computationally expensive. Running three Haar-like-feature based part
detectors on a 600 × 150 panoramic image takes on average 400ms on a 2GHz
single processor computer. This is the time needed for checking every image
position and all possible part sizes. The possible part sizes start from the initial
part size and then the part size is increased 1.1 times until it can not fit into the
image anymore. However, the floor constraint can heavily reduce the number of
positions and part sizes to search for and the time can be cut down to around
100ms. The two detectors (upper body and face) for the 320×200 pan-tilt camera
image take 80ms. Once the parts are detected, detecting persons using our model
takes around 20ms.

6 Conclusions and further work

We presented a foveated vision system for robust person detection. An omidirec-
tional camera is combined with a pan-tilt camera that can focus on a particular
location. We used Haar-feature based cascade classifiers to detect different hu-
man body parts: upper body, lower body, face and full body. We present a
principled probabilistic representation that combines the part detections and
can achieve person detection robust to partial occlusions, part detector false
alarms and missed detections of body parts. The recognition results greatly out-
perform each of the single Haar-feature based cascade classifiers. Combining the
information from both cameras leads to more reliable people detection.
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Fig. 7. Example people detections in panoramic images recorded from a moving robot.
One false positive detection is in the last image.
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