Accelerating Relational Clustering Algorithms With Sparse
Prototype Representation

Fabrice Rossi"), Alexander HasenfuB®, and Barbara Hammer(?
(1) Projet AxIS, INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France
Fabrice.Rossi @inria.fr
(2) Clausthal University of Technology - Institute of Computer Science
Julius Albert Strasse 4, 38678 Clausthal-Zellerfeld - Germany
{hasenfuss,hammer} @in.tu-clausthal.de,

Keywords: relational data, pairwise data, dissimilarity data, software implementation

Abstract— In some application contexts, data are bet-
ter described by a matrix of pairwise dissimilarities rather
than by a vector representation. Clustering and topographic
mapping algorithms have been adapted to this type of data,
either via the generalized Median principle, or more re-
cently with the so called relational approach, in which pro-
totypes are represented by virtual linear combinations of
the original observations. One drawback of those meth-
ods is their complexity, which scales as the square of the
number of observations, mainly because they use dense
prototype representations: each prototype is obtained as
a virtual combination of all the elements of its cluster (at
least). We propose in this paper to use a sparse representa-
tion of the prototypes to obtain relational algorithms with
sub-quadratic complexity.

1 Introduction

In some application domains, data cannot be described
by vectors, while in others, the standard Euclidean met-
ric doesn’t provide a meaningful way of comparing ob-
jects. Online handwriting recognition, for instance, im-
plies to classify drawing of characters that vary in length
and in execution speed: the non constant length prevents a
direct vector representation and even in the particular case
of identical dimensions, the non constant drawing speed
imposes to use distance based on variants of some type of
dynamic time warping to achieve good recognition rate [2].
Other examples can be found in, e.g., biology where pro-
teins are considered as sequences of amino acids (see e.g.,
[13]).

A generic way to address this type of data is to use a
measure of resemblance between the considered objects (a
similarity or a dissimilarity) that can be expertly designed
to handle complex non vector representation and/or to fo-
cus on some specific aspects of the data that cannot be cap-
tured by the Euclidean metric. When data are considered
only via the outcome of all the pairwise comparison be-
tween the observations, they are called indifferently pair-

wise data, (dis)similarity data or relational data.

Numerous data analysis methods have been designed for
relational data, especially for the specific problem of clus-
tering. Hierarchical clustering methods for instance are
naturally capable of handling dissimilarity data. Prototype
based clustering has also been an early target for extension
from the vector case to relational data, in particular with
the Partitioning Around Medoids algorithm [10], which ex-
tends K-means like algorithm to relational data using the
idea of the generalized median: as the center of mass of
each cluster cannot be computed for relational data, it is re-
placed by its best approximation among the original data,
by minimizing the sum of the dissimilarities between the
candidate and all the elements of the cluster. More recently,
this principle has been used to extend the Self Organizing
Map [11, 1, 12] and Neural Gas [4] to relational data (see
also [5, 6] for a quite different approach based on mean
field annealing).

One drawback of the median based method is the quan-
tization effect induced by the restriction on the prototype
values. As they must be chosen in the original dataset, any
sparsity in this set or any sampling problem will be nega-
tively reflected in the classification result. In the particu-
lar case of the Median SOM this induces frequently some
strong map folding as several distinct neurons share the
same prototype value. While this particular problem can
be avoided by enforcing uniqueness among prototype val-
ues [14], the general problem of the low quality of some
prototypes cannot be addressed in the median framework.

A solution consists in using implicit “linear combina-
tion” of the original data. When the dissimilarity is the
squared Euclidean distance, one can obtain the distance
between a data point and any linear combination of the
original data points using solely the dissimilarity matrix.
While the formula is valid only for the squared Euclidean
distance, it can be applied to other dissimilarities, as pro-
posed in [9, 8] for K-means and some fuzzy variations of
this algorithm. We show in [7] that it can also be used for
the Self Organizing Map and for Neural Gas, both in there
batch versions.

One limitation shared by median algorithms and rela-
tional ones is there cost. Careful implementations of me-
dian algorithms lead to minimal costs per iteration (epoch)
of order O(N?) (for N observations), as shown in [3] for
the Median SOM. We show in the present paper that this
is also the case for the relational K-means. As the size
of the dissimilarity matrix is O(N?) one might consider
this cost per iteration to be acceptable. However, clustering
and mapping algorithms are by essence exploratory meth-
ods: while the dissimilarity matrix is computed once and
for all, exploratory methods have some user driven param-
eters such as the number of clusters. It is natural for the
user to test several values of this number (and of other pa-
rameters if needed). Moreover, while batch methods tend
to converge very quickly to a local minimum, its quality
strongly depends on the initial random configuration. It
is therefore very important to compare outcomes of several
random starts. All in one, a per iteration cost of O(N?) can
lead in practice to quite important running times that are in-
compatible with exploratory analysis of large datasets.

This motivates the present work: we propose a strategy
to enforce sparse prototypes in the sense that each pro-
totype is obtained as an implicit linear combination of a
small number of original data points (called its support
points). This transforms the cost per iteration from O(N?)
to O(NPK + K P3), where P is the number of data points
per prototype and K is the number of clusters. While this
approach is used here for the relational K-means only, it
could be applied in the same way to topographic relational
mappings [7].

The rest of the paper is organized as follows. Section 2
recalls the relational K-means algorithm and shows how
to obtain the O(N?) per iteration cost. Then Section 3
presents the proposed sparse strategy, which is experimen-
tally studied in section 4.

2 Relational K-means

2.1 Relational data

We assume given N observations, (x;)1<;<n together with
a dissimilarity matrix, D = (d;;)1<; j<n that fulfills the
standard hypotheses for dissimilarities: D is symmetric,
has only positive values and a zero diagonal.

Relational clustering methods are based on the following
remark. Let us assume that the observations belong to R"
and that d is the squared Euclidean distance. Then consider
a normalized linear combination of the observations, i.e.,
y= Zf\; o,;x; with 211\;1 «; = 1. Then we have:

1
ly — x| = (Do), — §aTDa. (1)

For an arbitrary dissimilarity on N observations from an
arbitrary input space, we introduce implicit “linear combi-
nation” as normalized vectors from RY and we define an

extended dissimilarity:
1
d(a,x;) = (Dar), — §aTDa, (2)

for @ € RY and Zfil o; = 1.

The relational K-means uses linear combination proto-
types (denoted oV, ... a®) for K clusters) and opti-
mizes the following within class variance:

K
> Y daVxy), (3)

k=1x;€C}

where C, is the k-th cluster. As in the standard K-means,
this is done by alternating between an assignment phase
in which each observation is assigned to the cluster of its
closest prototype (in term of the extended dissimilarity) and
a representation phase in which prototypes are updated by
minimizing the within class variance while holding the par-
tition constant. For cluster k, the representation phase con-
sists in solving

(Ry) min > d(e,x), (4)
x; €ECk
N
with Zai =1
i=1

Some simple calculations leads to the obvious solution
alk) = |071,c|(§k’17 ..., 0k.N), where §;; = 1 if and only
if x; € C%. The prototype can therefore by considered as

an implicit center of mass for its cluster.

2.2 Naive algorithm

The standard formulation of the relational K-means is then
the following one:
(1) initialize randomly the clusters
(2) compute the a*) = ﬁ(éhl, ey ORN)
(3) foralli e {1,...,N}
(a) forall k € {1,..., K}, compute d(a®,x;) =
(Da®)). — %aw)TDa(k)

(b) assign x; to C}, for which d(a®), x;) is minimal
(4) update the a®
(5) return to 3 if the algorithm has not converged

A naive implementation of this algorithm can lead to rather
large running times, especially if the natural sparseness
of the a*) is not used. For an arbitrary vector o (with
>, @; = 1), computing (Do), is a O(N) operation, while
a’Da is a O(N?) operation. During the assignment
phase of the algorithm, %a(k)TDa(k) has to be calculated
for each cluster leading to a O(K N?) total cost. Moreover,
(Da'®). must be computed for each pair (k, i), leading
again to a O(K N?) total cost. Other operations have a neg-
ligible relative cost: this naive implementation of the rela-
tional K-means has therefore a complexity of O(K N?).

2.3 Sparse Prototypes

Fortunately, the a(*) are not dense vectors: there is only
|C| nonzero terms in «*). The total number of nonzero
coefficients is therefore N. This can be used to reduce the
complexity to O(N?).

The first aspect consists in using only nonzero terms in
the calculation of (Da(k))i = ﬁ Zjeck d;;, leading to
a cost of O(|Cy|) for one pair (k, ¢) and therefore to a total
cost of O(N?), as Zszl |Cx| = N. Applying this rule

to the calculation of a®)” Da®) would lead to a cost of
O(|Cx|?). However, assignment is based on the calculation
of (Da(k))i for all pairs (k, %), including those for which

1€ Ok. As a(k)TDa(k) = ﬁ Zieck (Da(k))i, the ad-
ditional cost to obtain this value based on the (Da(’“))i
is only O(|Ck|), i.e., O(N) for all clusters, rather than

K
O = [Ck).
We obtained the following O(N?) algorithm:

(1) initialize randomly the clusters

(2) compute and store (Da(k))i for all k and all i (mem-
ory cost: O(NK); computation cost: O(N?))

(3) compute and store f%a(k)TDa(k) for all & (memory
cost: O(K); computation cost: O(N))

(4) foralli € {1,..., N} (computation cost of the whole
loop: O(NK)):

(a) forallk € {1,..., K}, compute d(a®, x;) (in
constant time)

(b) assign x; to its closest prototype

(5) return to 2 if the algorithm has not converged

3 Enforcing sparser prototypes

3.1 Impact of sparsity on the running time

As shown in the previous section, the natural sparsity of
the prototypes leads to a O(N?) algorithm. While this is
acceptable for reasonable values of N, this quadratic be-
havior reduces the scalability of the algorithm. Fortunately,
sparser prototypes reduce further the complexity.

The computation cost of (De), is indeed proportional
to the number of nonzero terms in . If we assume to
have only P nonzero terms for each cluster prototype, com-
puting (Da*)) for all pairs (k, i) costs only O(NPK).

Moreover, a® " Da® can be computed based on the
quantities needed for data assignment in O(P) for each
cluster.

Enforcing sparse prototypes can therefore in theory lead
to a O(N PK) algorithm.

3.2 Center of mass approximation

However, the optimal prototypes obtained by the relational
K-means algorithm have O(|C%|) nonzero term. We have

therefore to rely on an approximation method based on the
following remark. In R"™, n points in general positions are
sufficient to generate the whole space as the linear com-
binations of these points. This means that while the cen-
ter of mass of cluster C' is conveniently represented by
alf) = \Cilk\(dkvla ..., 0k ~), one might also choose a lim-
ited number of points in C; and find coefficients for those
points that also represent the center of mass.

Let us more precisely consider Ji, = {jr1,.-.,Jk.p}
such that x;, =~ € C} for all p. We are looking for a repre-
sentation of the center of mass of C}, as a linear combina-
tion of the x;, (called the support points for this cluster),
that is we want to solve the following constrained optimiza-
tion problem:

1€Cl,
N

with > a; =15 Vj & Ji, o =0.
=1

Let us denote sy, j = >, dijs D = (duv)ues, ves and

Sk, g = (Skyjuar- -+ ska,P)T. Then problem (P) can be

rewritten:

. C
(Ps) min sk, B — %BTDJﬁl (6)

P
with g =1.
i=1

The corresponding Lagrangian is

P
C
(BN =5, 8- gt ea [1),
j=1
(7
whose gradient is given by
VL =sks—|CklDsB+ A1, (8

where 1 = (1,...,1)" € RP. Combining VLj = 0 and
Zle Bi; = 1, we obtain the following linear system:

(% D(E)-(7) v

Solving this system gives a local minimum of the problem.
It should be noted that in the particular case of the squared
Euclidean distance, if P is larger than the dimension of the
data space, then the linear system will likely be underde-
termined. It is therefore advisable to look for a least square
solution to the problem (via, e.g., a singular value decom-
position).

3.3 Sparse relational K-means

Using the sparse representation proposed above, we obtain
the following algorithm:

(1) initialize randomly the clusters

(2) select P random points in each cluster (see Section
3.4 for details)

(3) compute a solution 3, to (P) for each cluster:

(a) compute sy (computational cost: O(|Cy|P))

(b) solve Equation 9 (computational cost: O(P?)
with singular value decomposition)

(4) compute and store (D3,,), for all k and all ¢ (compu-
tational cost: O(NPK))

(5) compute and store —%ﬁkTDﬂk for all £ (computa-
tional cost: O(PK))

(6) foralli € {1,..., N} (computation cost of the whole
loop: O(NK))

(a) forallk € {1,..., K}, compute d(a®,x;)
(b) assign x; to its closest prototype

(7) return to 2 if the algorithm has not converged

The total cost is therefore O(NPK + K P3). As a con-
sequence, this approach will reduce the running time if
PK < Nand P2 < N.

3.4 Choosing support points

Computing the optimal support points for a cluster is a
combinatorial problem. It is therefore mandatory to rely
on heuristic selection. In the case of the squared Euclidean
distance, the center of mass of a cluster can obviously be
recovered exactly with d points in general position, where
d is the dimension of the data space. In practice, select-
ing randomly d points from the cluster leads to very good
results.

The same strategy can be applied to general dissimilari-
ties, with some additional care. In general, the sparse pro-
totype won’t coincide with the real center of mass. As a
consequence, each random subset of P points will produce
a different estimate of the center of mass. If the subset
changes at each iteration, the algorithm might never con-
verge. We propose therefore to select randomly P points
from each cluster and then to track assignments so as to
maintain the support points as constant as possible. When
a support point is removed from one cluster, another sup-
port point is randomly selected in the new cluster. As will
be shown in section 4 this strategy leads to very satisfactory
results.

4 Experimental validation

4.1 Setup

The proposed algorithms have been implemented in Java
and tested on a Athlon 64 3000+ Processor, under a 64 bits
Linux operating system (with the 1.5 version of the Java
virtual machine from Sun). Timing is done with a native
library that leverages the posix high resolution timer API.

To limit the impact of Just In Time compilation, the timing
is done as follows. First, the dissimilarity matrix is loaded
and the chosen algorithm is run to completion once. Then,
in the same virtual machine, the algorithm is run again ten
times. The reported figure is the median value of the ten
last runs, while the first one is discarded. Even for very
short running times, the combination of this strategy and of
the native high resolution timer results in very small rela-
tive variations between each run and therefore to reliable
estimates of the running time of the algorithms. We report
the average time spend per epoch in each situation.

4.2 Memory layout

Our main targets are datasets for which the dissimilarity
matrix fits into the main memory of a recent personal com-
puter, i.e. that occupies roughly a maximum of one giga-
byte of memory. With single precision floating point values
(4 bytes per value), this gives a maximum of approximately
23 000 observations. However, this implies storing only the
upper (or lower) half of the dissimilarity matrix and induces
therefore memory locality problems.

As pointed out in section 2.3, relational K-means oper-
ates by using sums of the form > jeo, dij- If one stores
the full dissimilarity matrix, the dissimilarities from x; to
any other data point are close to one another in the main
memory. For instance, 23 000 such dissimilarities occupy
96 Kilo bytes of memory. As a consequence, the processor
can load the corresponding memory block in its fast cache!
and then operate in this cache to compute >, d;; (on
the test hardware, the cache is 512 kilobytes large, while
the main memory measures 3 gigabytes).

On the contrary, storing the upper half of the dissim-
ilarity matrix implies to spread in the whole memory
the dissimilarities needed to compute sums of the form
> jeCh di;. As a consequence, the cache is far less effi-
cient in this calculations, leading, in theory, to an order of
magnitude slower algorithms. In practice, there is a com-
plex balance between the amount of memory used and the
memory access pattern, which means that in some situa-
tions, using half dissimilarity matrix might reduce the run-
ning time. However, this is very unlikely for the standard
relational K-means: this algorithm must indeed access to
all the dissimilarities at each epoch and is strongly impaired
by non locality.

To illustrate this point, we give a simple example with a
moderate size dataset. We consider N = 5 000 points ran-
domly chosen in the unit square (in R?) with the squared
Euclidean distance and we measure the running time of the
relational K-means for K = 20 clusters. Results are re-
ported in the following table:

IThis a very simplified description of the processor caching strategy,
but additional details are not needed to understand the problem of memory
locality.

Relational K-means
Storage method mean time per epoch
Full matrix 94.6 ms
Upper half 394 ms

In practice, one has to wait around one minute? to get a
clustering result (the best out of 10 random initial states)
in the first case against around four minutes in the sec-
ond case. As this difference in running time increases very
quickly with the size of the dataset, the half storage leads
quickly to very high computation load. For instance, with
N = 15000 and K = 10, the mean time per epoch is more
than 10 seconds, leading to running times of the hour order
that are completely incompatible with exploratory analy-
sis. In practice the standard relational K-means must be
used with full dissimilarity matrices and is therefore lim-
ited to roughly 15 000 observations for one gigabyte of
main memory.

The sparse approach proposed in this paper is far less
sensitive to memory locality, mainly because it scans only
NPK dissimilarity values for each epoch. When PK is
small, this reduces a lot the effects of non locality. In the
same experimental setting and with P = 3, we obtain the
following timing:

Sparse Relational K-means
Storage method mean time per epoch

Full matrix 5 ms
Upper half 4.8 ms

In practice, results are obtained in 15 seconds for the full
storage and in 14 seconds for the half storage. The sparse
approach can therefore be used with the half storage solu-
tion and scales up to 23 000 observations.

4.3 Running time

We first validate complexity models. The cost per epoch
depends only on the considered sizes (number of observa-
tions, of clusters and of support points) and not on the ac-
tual values contained in the dissimilarity matrix (even if in
practice, the exact time needed to solve Equation 9 might
depend on the involved values). We decided therefore to
mainly validate the cost models on simple Euclidean data.
As explained in the previous section, we limit ourselves to
a maximum of 15 000 observations with a full representa-
tion of the dissimilarity matrix. Data are generated in the
unit square in R? and compared with the squared Euclidean
distance. We first use a fixed number of K = 10 clusters to
illustrate the quadratic behavior of the relational K-means.
The following table gives the mean time per epoch as a
function of N:
Relational K-means

N 3000 5000 7 500
mean time (ms) 322 88.9 198
N 10000 12500 15000
mean time (ms) 366 592 873

2including virtual machine start up and data loading

A quadratic model of the form time= aN? + BN + fits
correctly the data (mean absolute relative error: 1.6%).

On the same data and with P = 3, the sparse relational
K-means has a roughly linear behavior and a much smaller
running time:

Sparse Relational K-means

N 3000 5000 7 500
mean time (ms) 5 9.4 14.2
N 10000 12500 15000
mean time (ms) 19.5 254 31

A linear model of the form time= aN + S fits the obser-
vations correctly (mean absolute relative error: 2.1%).

We then study the influence of P on the running time of
the sparse relational K-means. In theory, the rapid growth
of O(K P?) limits drastically the value of P for small val-
ues of N: with N = 3 000 and K = 10, for instance,
P cannot exceed 7 without dominating the complexity. In
practice however, the behavior of the algorithm is more
complex than expected as shown in the following table,
which reports running time for N = 3 000 and K = 10:

Sparse Relational K-means
P 3 4 6 10 20 50
meantime (ms) | 5 55 62 7.8 141 534

As P remains small compared to N, solving Equation 9
takes less relative time than expected which leads to bet-
ter scalability than expected in terms of P. We obtained
similar figures for other values of N. For instance with
N = 15 000, the mean running time per iteration is 495 ms
with K = 10 and P = 100, still below the value obtained
by the standard relational K-means.

We finally study the effect on K on the running time.
In theory, the standard relational K-means should be unaf-
fected, whereas the sparse version should behave linearly
with K (for a fixed value of P). In practice, the running
time of the standard algorithm increases with K: this an ex-
pected consequence of the additional bookkeeping induced
by a larger number of clusters. The following table gives
an example with N = 7 500:

Relational K-means
K 10 20 40 80 160
mean time (ms) | 198 209 222 246 301

For the sparse version, the behavior is roughly linear as
shown on the following table for the same dataset (and P =
3):
Sparse Relational K-means
K 10 20 40 80 160
mean time (ms) | 14.2 21.2 374 72.1 137

In summary, while the dependency on N is quite clear
(quadratic for the standard algorithm and linear for the
sparse one), the cost model is not accurate enough to pre-
dict reliably the expected running time for a given config-
uration (i.e., when taking into account both the number of
clusters and the number of support points), even if small
values of P always lead to short running times.

4.4 Clustering quality

Another important question is obviously the quality of the
clustering obtained via the sparse approach. To investigate
it, with first reused similar artificial data as the ones used in
the previous section, but in higher dimension. The follow-
ing table compares for instance the clustering results for
N = 5 000 points randomly chosen in [0, 1]5° clustered
in K = 50 clusters. Reported figures are the percentage
of running time used by the sparse algorithm and the per-
centage of increase in the final error, as a function of P
(the running time corresponds to 10 random configurations,
keeping the best error):

Sparse Relational K-means
P 2 5 10 15 20
running time 18 28% 64% 94.4% 118%
error increase | 3.2% 2.6% 1.7% 1.1% 0.7%

Similar results have been obtained with different parame-
ters, except that, for smaller number of clusters, as shown
in the previous section, the running time remains lower for
higher values of P. An interesting aspect is that despite
a lower value of K for a fixed P corresponds to a sparser
representation, the quality of the obtained clusters doesn’t
decrease. For instance for the same dataset with ' = 20
and P = 2, the error increases only by 2.1% for 9% of the
running time.

As a final validation, we have tested the proposed ap-
proach on an artificial string dataset. N = 10 000 ran-
dom strings of length uniformly distributed between [5, 15]
and compared via the string edit distance. We report the
same figure as the previous ones on the following table, for
K = 50 clusters:

Sparse Relational K-means
p 2 5 10 15 20
running time | 7.1% 11.8% 17.9% 27.3% 68.4%
error increase | 5.2% 3.8% 2.4% 1.6% 1.1%

Results are very satisfactory and compatible with those ob-
tained with the squared Euclidean distance.

5 Conclusion

We have proposed a sparse version of the relational K-
means algorithm with a complexity of O(NK P + K P3),
where P corresponds to the number of support points in
each cluster, a parameter under user control. This complex-
ity is a major improvement over the cost of the standard
relational K-means algorithm which scales as O(N?). We
have also shown on simulated data that the running times
of the proposed algorithm were much smaller than the ones
of the standard algorithm, while the obtained clusters were
only marginally worse than best ones, even with very small
values for P. Future works include validation on real world
data as well as extension to relational topographic mapping
algorithms [7].

References

(1]

(2]

(3]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

(14]

C. Ambroise and G. Govaert. Analyzing dissimilarity
matrices via Kohonen maps. In Proceedings of 5th
Conference of the International Federation of Classi-
fication Societies (IFCS 1996), volume 2, pages 96—
99, Kobe (Japan), March 1996.

C. Bahlmann and H. Burkhardt. The writer indepen-
dent online handwriting recognition system frog on
hand and cluster generative statistical dynamic time
warping. IEEE Trans. Pattern Anal. and Mach. In-
tell., 26(3):299-310, Mar. 2004.

B. Conan-Guez, F. Rossi, and A. El Golli. Fast
algorithm and implementation of dissimilarity self-
organizing maps. Neural Networks, 19(6-7):855—
863, July—August 2006.

M. Cottrell, B. Hammer, A. Hasenfu3, and T. Vill-
mann. Batch and median neural gas. Neural Net-
works, 19(6-7):762-771, July—August 2006.

T. Graepel, M. Burger, and K. Obermayer. Self-
organizing maps: Generalizations and new opti-
mization techniques. Neurocomputing, 21:173-190,
November 1998.

T. Graepel and K. Obermayer. A stochastic self-
organizing map for proximity data. Neural Compu-
tation, 11(1):139-155, 1999.

B. Hammer, A. Hasenfuss, and M. Rossi, Fabrice
annd Strickert. Topographic processing of relational
data. In Proceedings of the 6th Workshop on Self-
Organizing Maps (WSOM 07), Bielefeld (Germany),
September 2007.

R.J. Hathaway and J. C. Bezdek. Nerf c-means: Non-
euclidean relational fuzzy clustering. Pattern Recog-
nition, 27(3):429—437, March 1994.

R. J. Hathaway, J. W. Davenport, and J. C. Bezdek.
Relational duals of the c-means clustering algorithms.
Pattern Recognition, 22(2):205-212, 1989.

L. Kaufman and P. J. Rousseeuw. Clustering by
means of medoids. In Y. Dodge, editor, Statistical
Data Analysis Based on the LI-Norm and Related
Methods, pages 405—416. North-Holland, 1987.

T. Kohonen. Self-organizing maps of symbol strings.
Technical report A42, Laboratory of computer and in-
formation science, Helsinki University of technology,
Finland, 1996.

T. Kohonen and P. J. Somervuo. Self-organizing maps
of symbol strings. Neurocomputing, 21:19-30, 1998.
T. Kohonen and P. J. Somervuo. How to make large
self-organizing maps for nonvectorial data. Neural
Networks, 15(8):945-952, 2002.

F. Rossi. Model collisions in the dissimilarity SOM.
In Proceedings of XVth European Symposium on Ar-
tificial Neural Networks (ESANN 2007), pages 25-30,
Bruges (Belgium), April 2007.

