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Abstract— In this paper, an important application ofspecial complex PDEs for mesh construction areiredu
Self-Organizing Maps (SOM) to construction of adept for different dimensionalities of a physical domain
meshes is considered. It is shown that applicatibthe Self-organizing properties, inherent parallelismd an
basic SOM model leads to a number of problems liketochastic nature of the SOM learning algorithrmfan
inaccurate fitting the border of a physical domamesh essential basis for the development of highly &ffit
self-crossings, etc. The composite SOM model imethods of mesh construction [6]. Unlike the
proposed which is based on the composition of abbum conventional methods, the SOM is expected to allewo
of SOM models interacting in a special way and-selfconstruct adaptive meshes with arbitrary initialtagda
organizing over their own set of input data. A coféhe without limitations on the mesh density function.
composite SOM model is the colored SOM model wittMoreover, it is possible to make the process of hmes
nonadjustable neurons which provides us a technigque construction fully automatic, particularly, thegerio need
control the neuron weights adjustment taking irtocaint  to fix the boundary nodes beforehand, and the dlgor
the fixed ones and the general layout of the mAsha of mesh construction can be made universal witlaneg
result, the composite SOM model allows us tdo dimensionalities of the physical domain [7].
approximate an arbitrary complex physical domaiithw  When applying a basic SOM [1] for the mesh
well topology preservation. construction, there are a number of problems. |Firss

impossible to obtain an accurate approximation haf t

border of a physical domain; and second, the fedwf
1 Introduction topology preservation can lead to mesh self-crgssand

result in the mesh nodes going out of the physloahain
Self Organizing Map (SOM) is a neural network thas When constructing the mesh over the non convex dwma
been used in a W|de range Of Scientiﬁc and indhjstr and with Complicated mesh denSity distribution. §’d’l€
applications [1]. The ability of SOM model to pemiothe Problems make it difficult to obtain qualitative sutive
topology preserving mapping of high dimensionaladatmeshes [8].

onto a low dimensional space makes it possiblgpiyat ~_ In this paper, the composite SOM model is proposed.
to the construction of adaptive meshes used irataa of This model is based on the composition of a nunatfer
complex numerical simulation problems [2]. SOM models interacting in a special way and self-

Within the scope of all types of adaptive meshlesret organizing over their own set of input data. TheMsO
is an important class in which the mesh is an imagger Models taking part in the composition are respdasib
an appropriate mapping of a fixed mesh. All conieeratl  typically for the border or interior of a physicadmain.
methods of this class, such as equidistributiorhow{3], The main task of the learning algorithm for the posite
Thompson method [4], elliptic method [5], etc., aen SOM model is to provide the consistency betweesehe
a|gebraic and conformal mapp|ng ones, eventuad:lyire SOM models. The CompOSite SOM model allows us to
So|\/ing a Comp|icated System of nonlinear partiaq)vercome the prOblemS of t.he.baSiC SOM listed above
differential equations (PDEs) to obtain good enougfnd, thus, to construct qualitative meshes autoalti
adaptive meshes. The necessity of solving PDEsllysug0Vver complex, even multiply-connected, physical
leads to significant difficulties, among which ateose domains.
connected with initial mesh, limitations on mestsiy ~ There are several works in which an attempt ofifgn

function, efficient parallelization, etc. [6]. Adiinally, together a number of SOM models, self-organizingrov
given sets of input data, has been made.

The first has been developed for 3D shape
reconstruction for mobile robotics [9]. Input daimn
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After the training, some of the SOMs are joined byQ, ={q,...,q,} over Q. Let a map M be referred to the
_connectin_g their nearest boundary_neurons. The_"‘%‘PPf set of neuron indicedl,...,N}. For simplicity, it is
is not suitable for mesh construction because rngiris . .
performed without taking into account the topologfy assumed that the'meQN IS a rectar_lgular uniform one,
SOM models and is based only on the closenessunbne but _aII the techniques proposed in this work can_be
weights. In the proposed composite SOM model, figjni applied fpr meshe_s of .ot_her structures. F(_)r each pair of
is accomplished automatically during the learning. neurons,i-th andj-th, i,j=1...N, there is a lateral
For adaptive meshes, in [10] the interweavingonnection between them with strength being a
algorithm has been proposed which brings togetfier 1decreasing function of the distance betwgeandg;.
SOM for the boundary nodes, and 2D SOM for the Let G be a physical domain, in the Euclidean spRge
interior ones. But this algorithm interferes in tmput on which an adaptive mesks, ={x,...,x,} is to be
data occurrence that can lead to the distortiomesh constructed, where x 0G,

i=1..,N are desired
density function. The more developed composite . : .
algorithm is proposed in [8]. The composite alduritis adaptive mesh nodes locations. When applying SOM for

based on the special alternation of 1D and 2D &b a??rf)twe mesh cgps_tmctmn, the F;]o"?]s a wi;gPtdvzctqr
models. But it still does not allow the mesh toifitan ©' € correspondingth néuron which 1S updated during

appropriate way the essentially non-convex domaihs. the learning process. Random points frGnserve as the

composite algorithm serves as a background for tﬂ%pm (jata for SOM. Density dist.ri'butic.)n pf the uktEg
|earrl]oing a|gogithm of the proposed co?nposite SOMnesh is controlled by the probability distributiosed for
model random point generation [8].

A cére of the composite SOM model is a SOM:-like The learning algorithm for the basic SOM model

model that may involve a number of nonadjustabltgons’is'[S of.the .following steps. At.each iteratipna
neurons with a technique balancing the border effac random pointy  Is ge_nerated fromt; _among all the_
the small learning radius and coloring the neurand neurons  the w_mner is selected, which has the weigh
input data. Using appropriately these neurons twget vector x_(t) being closest to thg; and all the neurons
with the coloring technique, it is possible to esisdly —adjust their weights according to the followingerul
improve the topology preservation. The coloring X+ =xt)+ot), t.a)y-x). (1)
technique is close to the multi-block adaptive nessh
approach used in conventional PDE-based methods [4] ; ) ) )
On the one hand, the use of nonadjustable neurmhs a7, (t:%)H[0,1] is a function which defines the strength

coloring limits freedom of self organization of SOBuUt of the lateral connection between tmeth and i-th
on the other hand, from a practical point of vieWe neurons. These two functions control the magnitafie
composite SOM model becomes more flexible andodes displacements @& while the nodes move towards
capable of accurate approximation of input datd &ty the pointy, and essentially influence on the quality of
distribution. resulting meshes and speed of construction prodéss.

We believe that the composite SOM model igomposite SOM model employ the same learning rile (
applicable not only in the field of adaptive mesths the basic SOM model, but this rule is applied in
construction but in other areas in which it is giolssto  specific conditions as it is described in the r@attions.
divide input data into subsets or separate borader a The learning rate selection is very important isshen
interior data. applying the SOM for mesh construction. Therefore,

The paper is organized as follows. In Section 2, thhased on the experiments the learning rate has been
application of the basic SOM model is discusse@, thhoroughly selected to provide the good mesh qualith
learning rate suitable for adaptive mesh constuocts  reasonable computational speed. The learning step i
presented. Section 3 contains the description & thyafine by the function J(t) =t %y(t), where
colored SOM model with nonadjustable neurons is ) ]
proposed. In Section 3, the composite SOM modsl, itX(t) =1- and T is a maximum number of
architecture and the learning algorithms are pregos iterations which is fixed beforehand dependinghrin

where J(t) 0[0,1] is responsible for a learning step and

ST

Section 5 concludes the paper. our experiments, T =10N. The function for lateral
connections has the following form:

d(%n.%) :
2 The basic SOM for adaptlve nqm(t,qi):s[ r ] , where s[1(0,1) is fixed to be close
mesh construction to zero, e.gs=107, andr(t) is a learning radius which

is a decreasing function oft and given by
Let the SOM neuron layer consists fneurons. Each | iy = (1Y + ¥(t) (r(1)0.08'" -1 t°%5  Here r(1
neuron has a fixed locatiap in the Euclidean spadg, ®=rM X( )(rap. _ (I')) ' @)
whereq; is a point in the given computational domgn and r(T) initial and final radiuses,r(1)>r(T). The
Therefore, the neuron layer forms a meskearning rate provide the condition that the winner



receives the maximum displacement, while for tHeeot weights in the same direction as the winner, whb t
nodes the greater the distance between them,ghdHeir magnitude depending on the distance to the wirme). i

weights change. Therefore, the nonadjustable neurons should patieiin
When applying the basic SOM for mesh constructiorthe winner selection process.
the following problems occur. First, it is impodsiio Nonadjustable neurons don’'t change their weights

obtain accurate approximation of the border of gslal towards the random point while the other neurons do.
domain, as it can be clearly seen from all of tkengples To provide consistency, the pointis to be replaced by

in Fig. 1, because boundary nodes never reachdtteb the location of the mesh nodg if the m-th neuron is the
and they are influenced by the border effect. Seéconwinner and nonadjustable one. As a result, the mesh
some of the mesh nodes can go out of the domdimein nodes move directly towards a fixed node once it
case of complex non-convex domains (Fig. 1(a))rdild becomes a winner. It has to be noted that replattieg
general layout of the mesh is fixed unpredictalplé @an random point by the nonadjustable winner balanbes t
turn out to be unsuitable for the given configuwatof the border effect if the final learning radiu@) is small.

domain (Fig. 1(a)). Fourth, if the probability dibution If the weights of nonadjustable neurons are fixed
p(x) is non uniform, then boundary nodes can praflg appropriately, the topology preservation can berawed

to the interior of the domain that is the resulthzd essentially, e.g. it is possible to avoid mesh-emifsings
topology preservation as Fig. 1(b) shows. Finathye and to exclude the situation when boundary nodes
mesh may contain self-crossings (Fig. 1(c)) thakesdt propagate to the interior of the physical domailsoAthis
entirely unusable for numerical simulations. Alltbese technique allows us to obtain the mesh without sode
problems can be solved by using the composite SObltside the physical domain, even in the case ofpbex
model presented below. non-convex domain like the one shown in Fig. 1(a).

Fig. 1. Problems of the basic SOM application to adaptiestm
construction. (a) mesh nodes go outside the nomecodomain
and the mesh layout is unsuitable; (b) boundanesgopagate
to the interior of the domain; (c) mesh self-crongsi

3 Colored SOM with non-
adjustable neurons
T Ny
. , , 0 A
A core of the composite SOM model is a SOM-like J’:;ﬁ%‘,‘" Wi AR
model that involves a number of non adjustable owsir ,’{,y:;ﬁ;' =
and the technique of coloring the neurons and idpta. },{,’,ﬁjﬁ S
Let FOM be a subset nonadjustable neurons. Thi [l G
weights of these neurons are fixed in some way raoid '[',‘.‘\‘{'\\ T e
adjusted during the learning process. The taslovs to .."3:%‘:- A OSSR
. . . S : " S .‘
organize the learning process for adjustable nesuror, SS== '¢~
updating their weights in consistency with the FRE S S e
nonadjustable ones. Due to the lateral connectionsg 2 The process of mesh construction with nonadjustable
according to the learning rule (1), neurons chaig®  poundary neurons110" and 10000 iterations.
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In this example, all the boundary mesh nodes @eepl (1) Generate a random poiny JG according to the
to their correct positions _along the b_o_rdeerfa_nd has probability distribution p(x) .
been declared as nonadjustable. Initial locatiohshe ) )
interior mesh nodes has been set up to (0,0)nibesseen (2) ~ Calculate the Euclidean distancé€.1)) betweery
that the fixed boundary nodes induce the correcshme and all the weightsq (t) for which C;(y) =C, (i),

boundary ones in an appropriate way. Such a disioib

. X ’ x.(t), where
of mesh nodes is unreachable when using the b&dit S .
(compare with Fig. 1(a)). m=argminfd (y,x (t)) |Cs (v)=Cq, ()}-
The next question is how to obtain appropriate Wsig (3) If mOF , i.e. the winner is nonadjustable, then the
for nonadjustable neurons? For example, it is atition- random pointy is to be replaced by the weight
trivial task to fix the boundary nodes along thedsw vector of the winnery = x_(t) .

befor(_ehand like it's done in Fig. 2 As a solutltunth_ls_ (4) Adjust weights of all neurons with indices from

guestion, we propose the composite SOM model wisich M\ F using the following rule:

able to alternate construction of the mesh ovetiquaar _ ’

parts of the domain and, thus, to distribute alsimeodes X (t+1)=x (t)+5(t)'7qm t.a)y-x ),

over the domain automatically based on the self- wherei OM\F .

organization. Nonadjustable neurons then servehas t

basis for providing the consistency between those

different parts of the mesh. For example, at tagestof 4 Composite SOM modéd

updating the interior nodes, the boundary ones lwan

considered as nonadjustable, while the correctibn §ne idea of the composite SOM model is to combine

boundary nodes is performed with fixed interioresd  (ogether a number of SOM models interacting between
Since the composite SOM model distribute the mesty.h other in a special way and self-organizing tveir

nodes based on self-organization, there is a chémce,wn set of input data. Learning algorithm for the

obtain incorrect mesh layout. To make the compositg;mposite SOM model is based on the alternation of

SOM model flexible, let us introduce the coloringtrammg of each SOM model by tiégorithm 1.

technique which helps the model to detect a com&sh | o the physical domaits be divided into subdomains

layout. Although this model is capable to deteetltlyout G,....G. . The neuron layer is also divided intsubsets

by itself, the use of the coloring techniqgue makes '~ " '

possible to construct a mesh over an arbitrary dexnp Eﬁ?hhkfth subset of neuronshforms a part of Fhe lmesh
physical domain by dividing it into a number of raor Which is to be spread over the subdom@in A simple
simple ones. example of such a division is when we separat®ddinder

) : : .. and interior of a physical domain and divide allsime
Let Cg:G __’{Cl""_’c} be a coloring functlo_n which nodes into boundary and interior nodes. This kirid o
puts each point o into the correspondence with one ofgjvision seems to be the most convenient for thipritg
the colors ¢,....c,. Similarly, a coloring function of physical domains.

Co:M —{g,..,c,} defines the colors for neurons. TO specifya SOM model for eaktth part of the mesh,

These functions take part in the learning algorithrauch |t_|s necessary to dgflne a mad, UM, k=1..n.
a way that at each iteration the winner is selefteth Since eachk-th part is to be adapted to a number of
neurons of the same color as the random ppirs a neighboring parts of the mesh, the mpshould contain
result, mesh nodes of the colgrcan become winners Not only neurons from the k-th part but the onesnfthe
only wheny is generated from the subdomain of the sanféeighboring parts of the mesh which are the nearest
color ¢, and then, they gradually move towards thi§€ighbors for the neurons of the k-th part. These
subdomain. In Fig. 2, boundary nodes has beé}gghbor!ng neurons are considered as nonadju_stable
distributed using the coloring functions shown ig.F. While training thek-th SOM model. But they can adjust
The aim of coloring in this case is to separatéspaf the their weights during another alteration stages. 3dieof
domain border which are close to each other. all nonadjustable neurons for theth SOM model is
Before presenting the composite SOM model, letats | denoted byF, , where F, M, , k=1,...,n. An example
the learning algorithm for colored SOM model withof the collection of map#/ is shown in Fig. 3. In this
nonadjustable neurons (the procedure SOM-Core)whifigure, two 1D meshes and one 2D mesh are to be
is used at each alternation stage of the leardgmrithm consistently constructed over a multiply-connected
for the composite SOM model and processes a pahieof physical domain.
mesh.
Algorithm 1. The procedure SOM-Core.
Repeat the following operations at each iteration
t=tg,..t

*1tfin ”



macroiterations. The functiong, (s) can be chosen

depending on the physical domain configuration. The
learning algorithm for the composite SOM model ¢siiss
of the following steps.

Algorithm 2. Learning algorithm for the composite
SOM model.
(0) Set arbitrary initial weights of all neurons (0),

Fig. 3. Collection of 3 submaps for construction of the mes i=1...N . ] ]
over a multiply-connected physical domain. Blackinoes are (1) At the first macroiteration s(=1), apply the

adjustable and gray are nonadjustable. procedure SOM-Core to the general mdmwithout
nonadjustable neurons, i.e= =0, with random

Furthermore, the coloring functionS; and Cq are points generated from the whole doméai and
given which are defined over the whole physical diom t,()=1, t, (1) =T,, whereT, is a given number of

G and the mapM respectively. An example of the
coloring functions is shgwn in Fig. 4. These fuqnth_as (2) Repeat the following operations at each
been used for construction the boundary mesh inZig iterations > 1: f hk=1 W th

A collection of mapsMy together with the sets of macroiterations > 1. Tor eachk =1,...,n apply the
nonadjustable neurons and the coloring functions Procedure SOM-Core to the mapc with

iterations.

constitutes the architecture of the composite SOddeh nonadjustable neurorts, random points generated
This architecture depends on the configuration e t from G and ty(s) =tg,(s—1)+1,
physical domain. t. (5 =t () + ().

The step (1) of the Algorithm 2 is a ordering stade
the learning algorithm. Application of SOM-Core adi
mesh nodes makes the mesh become ordered and take
roughly the form ofG. The number of iterationg,
depends on the physical domain configuration. Talpic
To is varying from 0.0T to 0.009. Due to the coloring
functions, the correct mesh layout is reached dfier
step, and boundary nodes are located near their
appropriate border positions.

The step (2) is a refining stage of the learning
algorithm. All the submaps consistently fit morelanore
fine details of their own part of the physical doma
Overlappings between the submaps help them to keep
touch with each other, and the alternation contadlishe
weights to change gradually. From our experimeints,

some cases the better results can be obtainedeif th
C3 submap for outer boundary neurons does not have
nonadjustable interior neurons. Actually, it metrat the
(b) outer boundary nodes is responsible for the topologl
Fig. 4. Coloring functions. (a) the functiorCs; (b) the all other nodes adapt to them.
functionCq. These functions has been used for construction of In Fig. 5, examples of adaptive meshes constructed
the boundary mesh in Fig. 2. using the proposed composite approach are shown.
) . _ Quality of 2D meshes in Fig.5 has been measuretthdy
Each alternation stage of the learning algorithmte  generally accepted quality criteria for quadrilater
composite SOM model consists in training of all B@M  neshes such as the criteria of cell convexity and

models during a given number of iterations, ismefé to 5 5ngness, the criterion of mesh lines orthogonid.
as a macroiteration and is denotedsbifor each maMi,  he yajyes of these criteria are in the admissiatege.

there is a private counter of iterations, and tlaimum The adaptive mesh over a multiply connected domain,

number_ of |terat|on§'k is given in such a way thaps shown in the center of Fig. 5, has been construotettst
proportional to Wi, i.e. to the number O.f neurons n thenumerical simulations of a solitary wave run-up usit
map M. Let ¢,(s) be the number of iterations at theislands where each island assigns a hole in a gddysi
macroiteratiors during which the procedure SOM-Core isyomain [3]. Here mesh density is defined by oceaptid

to be applied to thé&-th SOM model. For example, values.
$.(8)=T,/S, where S is the maximum number of
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important feature of the proposed method is theaiit be
easily parallelized with efficiency greater thar¥®{g].

the future, the composite model that combines a

number of Growing Neural Gas models [11] is to be
developed. This model is expected to provide usess
efficient method of unstructured adaptive mesh
generation. Also, the SOM with nonadjustable nesitign
to be applied for generation of moving adaptive imss
since it can provide us a technique to control lloca
adaptive mesh refinements without global mesh
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Fig. 5. Examples of adaptive meshes constructed by thg)
proposed approach of the composition of Self OmjagiMaps.

. 8
5 Conclusions @l

The proposed method based on the composite SOM
model provides us an efficient and automatic tami f [9]
adaptive mesh construction without limitations on a
initial mesh and mesh density function and does not
require to fix mesh nodes along the border beforeha [10]
since the proper distribution of boundary nodes is
detected during the learning process. At the same,t

the quality of the resulting meshes constructedthsy
proposed composite approach has been evaluated as
acceptable according to the commonly used qualifgi]
criteria for finite-difference meshes. One of thesn
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