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Abstract—   This paper sheds some light on the claim that 
Emergent SOM (ESOM) are different from other SOM. 
The discussion in philosophy and epistemology about 
Emergence is summarized in the form of postulates. The 
properties of SOM are compared to these postulates. 
SOM fulfill most of the postulates. The most critical of 
the postulates are those concerned with “the whole is 
more than the sum of its parts”. The epistemological 
postulates regarding this issue are hard, if not impossible, 
to prove. An alternative postulate relying on semiotic 
concepts, called “semiotic irreducibility” is proposed 
here. This concept is applied to U-Matrix on SOM with 
many neurons. This leads to the definition of ESOM as 
SOM producing a nontrivial U-Matrix on which the terms 
“watershed” and “catchment basin” are meaningful and 
which are cluster conform. It is demonstrated that a 
clustering algorithm (U*C) which exploits the emergent 
properties of such ESOM is superior to other popular 
clustering algorithms. Results on synthetic data in blind 
studies and a real world applications are convincing.  

1 Introduction 
When Emergence is discussed properties are meant, 
which appear unexpectedly in a system as holistic 
(“Gestalt-”) phenomena. One part of the unexpectedness 
of emergent phenomena is that they can not be found 
when the constituents of the system are analyzed. An 
example of Emergence is the property of “wetness”, 
which can be attributed to water, but not to H, O or H2O 
molecules. Systems, which allow for Emergence, reward 
with properties that are “more than the sum of their parts” 
and “more than one could have expected”. In this paper 
self organizing feature maps (SOM) [1] are discussed 
with respect to Emergence. It is shown that SOM possess 
many prerequisites for Emergence. To show this, the 
requirements for Emergence, as discussed in 
epistemology and philosophy, are reviewed (chapter 2).  
The practical application of these philosophical concepts 
to computer programs is addressed in chapter 3. Then the 
properties of SOM are compared to these requirements 
(chapter 4). In chapter 5 properties are defined which 
allow Emergence to happen in SOM. This approach has 
practical applications in the form of Emergent SOM 
(ESOM) clustering algorithms. The key differences of 

these algorithms in comparison to typical clustering 
algorithms are discussed in chapter 6. Chapter 7 and 8 
present the results of a double blind study and real world 
application. In the last chapters, the results are discussed 
and summarized.  

2 The Concept of Emergence 
Emergence as an epistemological concept is not new. It 
seems, however, as Bentley puts it “that a clear definition 
of Emergence is very difficult to obtain”[3]. We follow 
here in most parts Stefan [2], who reviewed the evolution 
of the concept of Emergence from John Stuart Mill 1843 
until today. For a complete philosophical discussion of 
different approaches to Emergence see [2]. Emergence is 
a central and essential concept of modern scientific 
disciplines like Artificial Life [4] and Connectionism [2].  
The philosophical discussion is summarized here by the 
formulation of postulates attributed to Emergence. 
Postulates of Emergence: 
(0) Postulate of materialism: Carriers of the emergent 
properties or structures consist exclusively of material 
parts 
(I) Postulate of structural unpredictability: A novel 
property pn(S) of the structure of a system S is structural 
unpredictable if it is impossible to predict pn(S) before it 
is observed the first time.  
(II) Postulate of temporal unpredictability: A novel 
property pn(S) of the structure of a system S is called 
temporal unpredictable if the time tn, when pn(S) can first 
be observed in S can not be predicted.  
(III) Postulate of novelty: A property pn(S) of a system S 
is called novel if the system S did not have pn(S) at times 
t < tn and pn(S) is observable in times t >tn. 
Sometimes this postulate is extended such that pn(S) is 
not observable anywhere in the universe in times < tn. 
(IV)Postulate of systemic: A property p(S) of a system S 
is systemic, if no part S’ of the system S possesses p.  
(V) Postulate of dependence: If there are differences in 
the systemic properties of two systems S and T, then the 
systems S and T must differ in their parts or their 
arrangements or interactions. This postulate is also known 
as “synchronistic determinism” or “supervenience” [2]. 



(VI) Postulate of irreducibility: A systemic property p(S) 
of a system S is irreducible, if there is no way to derive 
p(S) from any part, subset or partial structure of S.  
Depending on what subset of the postulates above is used 
to define Emergence, several different flavors of 
Emergence may be defined. See [2], page 71 for an 
overview. 
In epistemology the postulate of irreducibility is the most 
controversial postulate of the concepts of Emergence. 
This postulate is commonly referred to as “the whole is 
more than the sum of its parts”.  Sometimes it is 
interpreted such that the emergent properties can not even 
in principle be predicted by analyzing the parts of a 
system. In the next chapter we will analyze what 
properties programs must have in order to be able to 
produce Emergence. 

3 Emergence in computer 
programs  

In this chapter properties are given, that allow to 
differentiate between algorithms that can produce 
emergent phenomena and such that do not show 
Emergence. The epistemological postulates above can be 
grouped in three categories: first materialism (0), second 
unpredictability (I…III) and third “constructivistic” 
(IV…VI) postulates. Algorithms, defined as a finite list of 
well-defined instructions that can be translated into 
programs which run on a Turing Machine, certainly fulfill 
the postulate of materialism (0).  
When an algorithm uses a source of (true) random 
numbers RND in the course of its calculation, the 
calculations of such an algorithm are nondeterministic.  
What the calculations of a nondeterministic algorithm are, 
can not be predicted. Therefore the postulates of structural 
unpredictability (II) and novelty (III) are fulfilled by such 
algorithms. If the time until a nondeterministic algorithm 
reaches a result depends on RND the algorithm can be 
termed temporal unpredictable (IV).  So programs, which 
make use of RND fulfill the unpredictability postulates of 
Emergence (I…III).  
What remains are the constructivistic postulates (IV… 
VI). To give a practical solution, we introduce the 
property “semiotic irreducibility” (SI): a systemic 
property p(S) of a system S consisting of parts ei is 
semiotic irreducible, if the p(S) is described using a 
semiotic L = (G, Z, P) with syntax G, semantics Z and 
pragmatics P and L it is not meaningful to describe 
properties of the parts ei  in L. 
A semiotic describes the signs, symbols and the 
interpretation of a language and its meaning [7]. For 
example, the pixels of a computer screen can be described 
within a semiotic. They can have a syntax, grammar and 
interpretation. “Color depth” or “contrast” might be 
properties formulated in pixel semiotics Lx. Another 
semiotics is the level of letters which may be formed by 

sets of pixels. In this semiotic Lalpha the properties “bold” 
or “italics” can be defined. With this examples the 
meaning of semiotic irreducibility can be exemplified: 
within the semiotics Lalpha the syntax, semantics and 
meaning (pragmatic) of  “italics” is expressible. Although 
the letter is formed using pixels, “italics” make no sense 
when applied to pixels. The property “italics” of letters is 
semiotic irreducible to pixels. An analogical example 
from Physics is that the properties of “pressure” and 
“temperature” are irreducible to molecules. 
When a property is semiotic irreducible (SI), it follows 
that the property is systemic. Since the language and 
concepts are not applicable for the parts of the system it is 
clear that these parts do not possess the semiotic 
irreducible property. Our approach using semiotics has 
another advantage: the property defined in a certain 
semiotic is useful, i.e. has a meaning, can be used for 
some purposes, can be used to formulate proofs or are 
even useful to make money etc.  For programs or 
algorithm this concept has the consequence that a notion 
exists which can be constructed using elementary parts of 
the system. This Notion has a definite meaning when 
applied to the system as whole, but loses its meaning, 
when applied to single parts of the system. For example 
the notion “average” makes sense when applied to a 
reasonably large set of numbers, but is useless if applied 
one number. The notion of an average can therefore be 
considered to be semiotic irreducible (SI). 
In summary a computer program has the prerequisites to 
show Emergence if  

- the algorithm makes use of a source of random 
numbers for it’s calculation (nondeterminism) 

- semiotic irreducible properties can be defined on 
the results of the algorithm  (SI) 

4 Properties of SOM with respect 
to Emergence 

From the viewpoint of systems theory SOM have the 
following properties: SOMs are 
- complex 
- multi agent 
- dynamical 
- adaptive 
- nondeterministic 
- bifurcating (history dependent) 
- irreversible   
- nonlinear 
SOMs are complex, in the way that they are made up by 
multiple interconnected (communicating) elements: 
neurons, and neighborhoods. SOMs can be regarded as 
multi-agent system (MAS). MAS are composed of several 
agents which collaborate to reach a goal. The agents can 
be identified with the neurons, the collaboration is the 
modification of the neuron’s weight within a 
neighborhood.  The goal of MAS-SOM systems is the 
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adaptation to the structure of the input data. SOMs can be 
regarded as a dynamical system. A dynamical system has 
a state determined by a collection of real numbers, or, 
more generally, by a set of points in an appropriate state 
space. The set of all weights of all neurons defines the 
state of a SOM. SOMs are nondeterministic. Systems are 
non-deterministic, if randomness is involved in the 
development of future states of the system. Typically 
there are two sources of randomness in SOMs: the choice 
of the initial configuration of the weights and the 
selection of the next input vector to be learned. A 
bifurcation occurs when a small smooth change made to 
the parameter values of a system causes a change in the 
system's long-term behavior.  Finding the current best 
matching unit (BMU) depends on all the potentially small 
changes of the weight vectors. This also depends strongly 
on the sequence when the input vectors are processed. If a 
different BMU is found the future of the calculation is 
strongly altered. Irreversibility: the shrinking of the 
neighborhood and in consequence the inclusion or 
exclusion of neurons from a neighborhood produce an 
irreversible learning process. Irreversibility also follows 
from the bifurcations during the learning phase. 
Nonlinearity: the inclusion and exclusion of neurons in a 
neighborhood is the primary source of nonlinearity in 
SOM. With all this properties SOM fulfill many of the 
postulates of Emergence. Materialism is self 
understanding (O). The ordering of the neurons can be 
regarded as temporal and structural unpredictability and 
novelty of the results of a SOM. Unpredictability and 
novelty properties follow from the nondeterministic, 
bifurcating, irreversible and nonlinear leaning 
rule(I…III). Supervenience is also given. However, it is 
unclear, if there are systemic and irreducible properties of 
SOM. In particular, if properties can be found which can 
only be found for the whole SOM and not for its parts. In 
the next chapter a function on the U-Matrix of a SOM is 
defined, which is semiotic irreducible (SI). 

5  Emergent SOM 
For the lack of space, the basic notations of SOM are not 
defined here. For the definition of data space, input data, 
data distance, neurons, weight, neighborhood, best 
matching unit (BMU), cluster, output grid(=map space) 
and  learning algorithm for SOM see, for example, [5] or 
Kohonen [1].  The U-height uh(N) of a neuron N is the 
average data distance from the weight vector of N to the 
weight vectors associated  with neurons in its 
neighborhood.  The display of the U-heights on top of the 
neurons of a map space is called U-Matrix [5]. A step on 
an U-Matrix is a movement from a neuron A to one of the 
neurons A’s immediate neighborhood. A path is a 
connected sequence of steps. A step from a neuron A with 
U-height uhA to a immediate neighboring neuron B with 
U-height uhB is called ascending  if uhB > uhA. Neuron A 
drains to neuron B if  there is a path p from A to B and 

each step in p is not ascending and uhB < uhA. A 
catchment basin is a subset S  of neurons of a SOM such 
that all neurons in S drain to the same local minimum. If 
such local minima are immediate neighbors, their 
catchment basins are merged. The attractor of all neurons 
within a catchment basin is a unique neuron chosen from 
the minima of the catchment basin. If there are more than 
one candidate for the role of an attractor, it can be chosen 
according to some data distribution criteria, like, for 
example, local density in data space. Watersheds are the 
frontier lines between catchment basins. There are 
efficient algorithms, for example [6], for the calculation 
of catchment basins and attractors for a U-Matrix. 
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Figure 1: Atom data set  

 

Consider, for example, the “Atom” data set shown above. 
This data set consists of two groups of data. One set is 
concentrated in a small sphere, the other group surrounds 
the first as the electrons in the hull of an atom. This data 
set is linear not separable. K-means and Ward clustering 
algorithms are not able to separate the two groups 
correctly. To be able to define catchment basins, a SOM 
of 50*82 = 4100 neurons on a planar grid was used. 
Figure 2 shows the catchment basins on the U-Matrix.  
 

 
Figure 2: U-Matrix of Atom data with catchment basins 
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Note that the basin for the data in the “hull” shows more 
internal structure due to the larger inter point distances in 
the “hull” cluster. 
The watershed order of the U-Matrix U WO(U) is the 
number of distinctive catchment basins (= number of 
different attractors) on U. A U-Matrix is called nontrivial, 
if its watershed order WO(U) >1 and WO(U) is 
substantially smaller than the number of input data and 
the number of neurons on the SOM. A SOM is locally 
ordered if it produces a nontrivial U-Matrix U and U 
conforms with the cluster structure of the data. I.e. all the 
neurons within a catchment basin belong to the same 
cluster. In this case the catchment basin represents (a part 
of) the data’s cluster. The watersheds on U represent 
(local) cluster borders. A U-Matrix is cluster conform if 
each cluster in the data is represented by either a single 
catchment basin or a set of directly adjacent catchment 
basins. Compare the catchment basins for the “hull” in 
figure 2. 
We call a SOM Emergent (ESOM), if the definition of 
watersheds and catchment basins is meaningful on the 
SOM’s U-Matrix and if the SOM learning algorithm 
produces a cluster conform, or at least a locally ordered, 
U-Matrix.  
What needs to be shown is that this definition of ESOM 
fulfills the postulates of Emergence. Catchment basins 
and/or watersheds are not meaningful concepts for the U-
heights of SOM with few neurons. These concepts 
emerge only when the whole structure of a large U-Matrix 
is regarded. Think of SOM with 2x2 or 3x3 neurons. No 
really meaningful catchment basin can be defined on 
those SOM. That a neuron belongs to a certain catchment 
basin is meaningless for such SOM. The property to be 
cluster conform is therefore semiotic irreducible (SI). The 
function which assigns to each neuron the attractor of the 
catchment basin to which it belongs, is a function which 
depends on the whole ‘Gestalt” of the U-Matrix. The 
changing of the U-height of a single neuron, if it is on the 
watershed between two catchment basins may change the 
structure of the catchment basins completely. It follows 
that cluster conformity is systemic. A necessary condition 
for ESOM, is therefore to consist of enough neurons for a 
meaningful definition of watersheds and catchment 
basins. For practical applications, we found 4000 (for 
example 50x80) neurons to be a good lower limit to show 
Emergence. For the proper choice of the layout and 
dimensions of an ESOM the reader is referred to [14]. If 
the learning algorithm of an ESOM is topology 
preserving, it the corresponding U-Matrix is cluster 
conform. Such a SOM is therefore capable to produce 
Emergence. 

6  Application 
The SOM leaning algorithm can be interpreted as a 
variant of k-means clustering with additional topological 
constraints. This holds in particular for SOM with few 

neuron. Such SOM can be termed topological k-means 
SOM (TKM-SOM) With the canonical “Chainlink” 
example it could be demonstrated, however, that ESOM 
are different from TKM-SOM [12]. In TKM-SOM cluster 
are usually identified with neurons. So TKM-SOM can be 
directly used for clustering. ESOM, however, do not lead 
directly to a clustering. They can be considered as a 
visualization technique on top of the nonlinear and 
discontinuous projection of data onto the SOM’s neuronal 
grid.   
Clustering algorithms on top of ESOM have been 
published. Cluster algorithms on SOM are called 
emergent, if they use catchment basins on an ESOM’s U-
Matrix.  U*F as defined in [8] and U*C as defined in [9] 
are examples of Emergent Clustering algorithms on SOM.  
U*C uses density information to merge elementary basins 
to cluster conform basins. 
In this chapter we demonstrate that U*C working on 
ESOM is superior to other clustering algorithms. In 2005 
a set of keystone clustering problems has been published 
[10]. The data is called Fundamental Clustering Problem 
Suite (FCPS). It can be obtained from 
www.mathematik.unimarburg.de/ ~databionics/en/.  
 
From FCPS some data sets are in particular interesting to 
demonstrate the differences between Emergent and not 
Emergent cluster algorithms.One of these data sets in 
FCPS is called “WingNut” and is shown in figure 3. The 
clusters in WingNut have dense regions just at the borders 
between the clusters. There the other cluster is sparsely 
populated. This confuses many clustering algorithms. 
Single Linkage clustering did not distinguish between the 
two clusters. The result of a Ward clustering is shown in 
figure 4. K-means with its implicit requirement, that 
clusters are of spherical shape constructs a linear border 
between the two clusters. The global error function which 
is optimized by in K-means, however, is misled by the 
dense basins. Figure 5 shows the result 
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Figure 3: WingNut data set from FCPS 
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Figure 4 Ward clustering of WingNut 
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 Figure 5 k-means clustering of WingNut 

 
A ESOM consisting of a grid of 50x82 = 4100 neurons 
has been trained for 20 epochs using point-wise training. 
A U*-matrix (see [5]) has been constructed which had 62 
elementary catchment basins. U*C combines these basins 
into two cluster conform basins. 
 

 
Figure 6: Catchment basins of ESOM for WingNut 

 

For many clustering problems the borders of the clusters 
are defined as a combination of low density and large 
distances. In ESOM this can be accounted for by using 
the U*-matrix [10].  
 
Table 1 summarizes the performance of U*C working on 
ESOM in comparison to other popular clustering 
algorithms. The correct number of clusters was used in 
Single-Linkage, Ward and K-means Clustering. U*C had 
to find the correct number of clusters by itself. 
 

Table 1: Clustering of FCPS data 

 
These results show that Emergent clustering is superior to 
non Emergent clustering algorithm even for very 
elementary clustering problems. 

7  Blind experiment 
In fall 2005, the working group of data analysis and 
numerical classification of the German classification 
society (GfKl/AG-DANK) performed a blind experiment 
(http://stoch.fmi.uni-passau.de/agdank/muenchen2005). A 
set of 11 synthetic data sets with known cluster structure 
were published without the a priori clustering. This suite 
was clustered using U*C, Single Linkage, Ward and k-
means clustering. 
Table 2 summarizes the results. All ESOM results were 
obtained using 80x50 neurons on a toroid grid in 20 
learning epochs. Except U*C all other clustering 
algorithms needed an estimation of the number of 
clusters. The results shown are on the basis of the true 
number of clusters except for U*C which estimates this 
number by itself. For the data set “dankdata11” U*C 
identified only 4 instead of 5 clusters. In all other cases 
the correct numbers of clusters were found. 
This shows that the superiority of Emergent clustering can 
be observed also in true double blind studies. 
 
 
 
 
   

DataSet Single Ward k-means U*C 
Hepta 100% 100% 100% 100%
Lsun 100% 50% 50% 100%
Tetra 0.01% 90% 100% 100%
Chainlink 100% 50% 50% 100%
Atom 100% 50% 50% 100%
EngyTime 0% 90% 90% 90% 
Target 100% 25% 25% 100%
TwoDiamonds 0% 100% 100% 100%
WingNut 0% 80% 90% 100%
GolfBall 100% 0% 0% 100%
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Table2: Blind Clustering of AG-DANK data 

DataSet Single Ward k-means U*C 
dankdata1 83% 83% 83% 100%
dankdata2 27% 85% 85% 83% 
dankdata3 56% 49% 71% 83% 
dankdata4 81% 99% 99% 99% 
dankdata5 26% 83% 82% 92% 
dankdata6 100% 100% 99% 99% 
dankdata7 78% 91% 64% 78% 
dankdata8 63% 63% 63% 91% 
dankdata9 65% 81% 81% 99% 
dankdata10 100% 77% 67% 100%
dankdata11 28% 84% 91% 67% 

 

8 Real world data: Protein 
Cavities 
Many biochemical pathways are catalyzed and regulated 
via the complementary recognition properties of proteins 
and their substrates. The ligand accommodates the 
binding cavity of the protein according to the lock-and-
key principle. If two binding cavities have common 
substructures, it can be assumed that the two active sites 
are capable to bind similar ligands and thus exhibit related  
function. Figure 7 shows a ligand inside a cavity. 
 

 
Figure 7: Binding cavity of an enzyme with ligand inside 
 
Enzymes are a particular important class of biochemical 
agents. Enzymes can be classified with respect to their 
function. The bound ligand, each enzyme has a specific 
EC-number.  Enzymes having the same EC-number are 
very similar. Enzymes with different EC-numbers have 
different cavities. The clustering task is to find common 
substructures within different cavities in order to identify 

a common functionality. This work was primarily 
undertaken by Katrin Kupas of our working group in 
collaboration of the Institute of Pharmaceutical Chemistry 
of the University of  Marburg [11].  An U*C clustering of 
774 binding pockets was performed. For these enzymes 
the EC class numbers were known. The enzymes belong 
to 13 different EC classes.  The U*C clustering of these 
enzymes resulted in an accuracy of 98.3% compared to 
the true enzyme classes. Details of the clustering of 
enzymes are published in [11].  
This demonstrates the applicability of Emergent 
clustering to large real world data sets with complicate 
high dimensional structures. 

9 Discussion 
In this paper an attempt is made to clarify the concept of 
Emergence in particular for SOM. Although Emergence is 
a central concept in many modern research areas, there is 
no precise definition has so far. This paper summarizes 
the discussion in philosophy and epistemology by giving 
a number of postulates for Emergence.  
It is demonstrated, that SOM fulfill many of the 
requirements of Emergence.  The most critical postulates 
for Emergent properties of a system are “systemic” and 
“irreducibility”. For short these postulates claim that 
emergent properties are “more than the sum of the parts of 
the system”. At the root of these postulate lies the idea 
that an Emergent property of a system is only produced 
by the system as whole (Gestalt-phenomenon). It should 
not, not even in principle, be possible to derive or even 
predict the emergent property when single parts of the 
Emergent system are analyzed. These requirements for 
Emergence are very hard, if not impossible, to prove. In 
this paper this postulate is replaced by an approach from 
semiotics. Semiotic irreducibile properties of a system are 
such, that the application of the properties, even the 
vocabulary, does not make sense, if applied to the parts of 
the system.  
For the U-Matrix on SOM the concepts of “watersheds” 
and “catchment basins” can be defined.  However, this 
makes only sense, if the SOM possesses enough neurons. 
The problem is the same as the definition of a forest, 
which is semiotic irreducible to one tree. 
The concepts of watersheds  and  catchment basins are 
semiotic irreducibile to U-heights of single neurons. If a 
SOM produces an U-Matrix with watersheds that coincide 
with a clustering structure in the data, these watersheds 
are useful in the detection and definition of clusters in the 
data. Such SOM can be called Emergent SOM (ESOM). 
It is clear, that if the ESOM is topology preserving in 
consequence the U-Matrix is cluster conform, even for 
cluster structures which are not known beforehand. 
The usage of these concepts are demonstrated with a 
clustering algorithm which exploits the Emergent 
properties (U*C of [9]). On data sets which are known to 
be simple, but hard to cluster, U*C outperforms clearly 
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Single-Linkage, Ward and K-means (table 1). In a double 
blind experiment, where the true clustering became 
known only after the publication of the results U*C 
performed superior to the other clustering algorithms 
except in one case. In this case U*C estimated a wrong 
number of clusters. It has to be noted, however, that all 
other clustering algorithms had knowledge of the true 
number of clusters, while the ESOM clustering with U*C 
identified the number of clusters by itself.  
On a real world problem, the clustering of three 
dimensional molecular structures, U*C made only 2% 
errors. As reason behind the excellent clustering results, 
the Emergent properties of catchment basins are 
identified. If a ESOM is formed during training, which is 
topology preserving, the attractors within watersheds of 
the corresponding U-Matrix are situated well within a 
cluster. Thus attractors alleviate the clustering problem at 
critical borders. A canonical demonstration of this is the 
WingNut data set of FCPS. In Figure 6 it can be seen, that 
the attractors are “immersed” in the clusters. The border 
between the two clusters is clearly marked by a large wall 
in the U-Matrix. This means that attractors are well within 
clusters and away from critical borders between clusters. 

10 Conclusion 
This paper sheds some light on the differences between 
non Emergent SOM and Emergent SOM (ESOM). The 
discussion in philosophy and epistemology is summarized 
here in the form of postulates. The properties of SOMs 
are compared to these postulates. All SOM fulfill the 
postulates except the constructivistic ones. The most 
critical of the postulate are those concerned with “the 
whole is more than the sum if its part”. The original 
postulates regarding this issue in the epistemological 
Emergence discussion are hard, if not impossible, to 
prove. A postulate relying on semiotic concepts, called 
“semiotic irreducibility” is proposed here as a feasible 
alternative.  
This concept is applied to U-Matrix on topology 
preserving SOM with many neurons. This leads to the 
definition of Emergent SOM (ESOM) as one on which 
the terms “catchment basins” and “watershed” are 
meaningful and furthermore useful for clustering.  
The usefulness of the approach is demonstrated with an 
ESOM based clustering algorithm, which exploits the 
emergent properties of such SOM. Results on synthetic 
data even in a blind study are convincing. The application 
of ESOM clustering for a real world problem let to an 
almost 100% solution. 
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