
Label Propagation for Semi-Supervised Learning in
Self-Organizing Maps

Lutz Herrmann and Alfred Ultsch
Databionics Research Group

Dept. of Mathematics and Computer Science
Philipps-University Marburg

email: {lherrmann, ultsch}@mathematik.uni-marburg.de

Keywords: semi-supervised learning, label propagation, clustering

Abstract— Semi-supervised learning aims at discov-
ering spatial structures in high-dimensional input spaces
when insufficient background information about clusters
is available. A particulary interesting approach is based
on propagation of class labels through proximity graphs.
The Emergent Self-Organizing Map (ESOM) itself can be
seen as such a proximity graph that is suitable for label
propagation. It turns out that Zhu’s popular label prop-
agation method can be regarded as a modification of the
SOM’s well known batch learning technique. In this pa-
per, an approach for semi-supervised learning is presented.
It is based on label propagation in trained Emergent Self-
Organizing Maps. Furthermore, a simple yet powerful
method for crucial parameter estimation is presented. The
resulting clustering algorithm is tested on the fundamental
clustering problem suite (FCPS).

1 Introduction
In the field of machine learning, semi-supervised learning
(SSL) represents a midpoint between supervised learning,
in which all input samples are preclassified, and unsuper-
vised learning, in which no class labels are given. SSL aims
at incorporating a small amount of preclassified data into
unsupervised learning methods in order to increase perfor-
mance of data analysis. Therefore, SSL has recently be-
come focus of interest, particularly because of application
domains in which unclassified data are plentiful, such as
bioinformatics and medical domains.

This work describes how SSL is accomplished by the
so-called Emergent Self-Organizing Map. Basic con-
cepts and algorithms are introduced in sections 2 and 3.
In section 4 a label propagation method for the Emer-
gent Self-Organizing Map is introduced. Section 5 de-
scribes how label propagation can be used to accomplish
semi-supervised learning tasks with trained Emergent Self-
Organizing Maps. Furthermore, a simple yet powerful
method for parameter estimation is presented. An experi-
ment is done in section 6 in order to evaluate the clustering
performance of our proposed method. Finally, in sections
7 and 8 features and benefits of our method are discussed
and summarized.

2 Basic Principles
Semi-supervised learning (SSL) means learning from both
preclassified and yet unclassifed input samples. Thus, SSL
methods are located between classical supervised learning
techniques, in which all input samples are preclassified,
and unsupervised learning techniques, where no class la-
bels are given at all. For a comprehensive overview on SSL
methods see [11].

Formally, SSL aims at construction of a classifier func-
tion from a finite set of partially classified input samples
X ⊂ R

n. A classifier function c : X → {0, C1, ..., Ck}
assigns class labels to input samples. An input sample
x ∈ X is said to be preclassified c(x) ∈ {C1, ..., Ck}.
If this is not the case x is said to be unclassified, i.e.
c(x) = 0. SSL aims at generalizing c into a meaningful
c′ : X → {C1, ..., Ck} such that subsets of coherent input
samples with identical class labels, so-called clusters, do
emerge.

Here, it has to be mentioned that SSL methods come in
two flavors. Semi-supervised classification means that the
resulting classifier function c′ is limited to the class labels
given in the set of preclassified input samples. In case of
semi-supervised clustering, the resulting classifier function
c′ is free to add new or remove class labels, if it complies
with the given spatial structure of X .

A promising approach for realization of semi-supervised
learning is subsumed as label propagation (LP). Label
propagation methods operate on proximity graphs in order
to spread informations about class memberships to nearby
nodes. This is based on the assumption that nearby entities
should belong to the same class, whereas far away entities
might belong to different classes.

Formally, a proximity graph (V,E) consists of nodes
V = {1, ..., |X|} representing the input samples of training
set X and undirected edges E ⊂ V × V represent sim-
ilarities between them. These similarities are more pre-
cisely determined by a weight matrix W whose entries
wij ∈ [0, 1] are non-zero iff xi and xj are neigbouring, i.e.
(i, j) ∈ E. Common ways to determine W are k-nearest-
neighbour [8] or gaussian kernel approaches [9]. For more
details see sections 3 and 4.



For LP purposes, each node is assigned a so-called label
vector. A label vector li ∈ [0, 1]k contains the probabilistic
memberships of input sample xi ∈ X to the available k ∈
N clusters. Nodes belonging to preclassified input samples
xi ∈ X with c(xi) = Cq ∈ {C1, ..., Ck} have fixed label
vectors li, i.e. lij is 1 iff j equals q, otherwise it is set to
zero.

In LP methods, the nodes propagate their label vectors to
all adjacent nodes according to the proximity defined in W

(see sections 3 and 4). Thus, nearby nodes are more likely
to have similar label vectors than far away nodes. Label
vectors of unclassified nodes are initialized at random and
iteratively adapt to the fixed labels of preclassified nodes
according to the proximity graph. Therefore, nodes of pre-
classified input samples are used as seed points for spread-
ing known labels through the proximity graph of input sam-
ples. This is how LP methods accomplish semi-supervised
learning tasks.

3 Related Work
In the following, some related works are presented in order
to give an idea how semi-supervised clustering usually is
accomplished.

The semi-supervised fuzzy c-means (ssFCM, [1]) is, to our
knowledge, the first semi-supervised clustering algorithm
using label vectors without a proximity graph. For each
input sample xi ∈ X , there is a label vector li ∈ [0, 1]k

that contains fuzzy memberships to each available clus-
ter. The ssFCM method aims at minimizing a fuzzy-
fied version of the popular k-means error criterion, i.e.
∑

xi∈X

∑k

j=1 lijd
2(xi,mj) with mj being the center of

cluster j and d denoting some distance measure, e.g. the
euclidean metric. Cluster centers and label vectors are iter-
atively updated according to the Expectation-Maximization
principle. For preclassified input samples xi with c(xi) =
Cq , the label vector is kept constant, i.e. li being 1 in posi-
tion q and 0 elsewhere. For unclassified input samples the
label vectors are iteratively updated.

A popular graph-based approach on semi-supervised learn-
ing was published by Zhu et al. [9] [10]. A fully con-
nected graph is used for label propagation. Each node cor-
responds to an input sample of training set X ⊂ R

n. The
edge weights wij between input samples xi, xj ∈ X are
determined by a gaussian kernel function that depends on
the distance d(xi, xj) and a radius σ ∈ R

+. From that a
matrix T ∈ R

|X|×|X| is derived that contains the transi-
tion probabilities between graph nodes, i.e. Tij =

wij
∑

r
wrj

.

According to T , the class informations of preclassified
samples are propagated through the set of input samples.
For each input sample xi, there is a label vector li that
is fixed for preclassified input samples and iteratively al-
tered for unclassified input samples, i.e. L′ = TL with

L = (li)xi∈X ∈ R
|X|×k being the matrix of label vec-

tors. Obviously, the class boundaries are pushed through
high density regions and settle in low density gaps. Proof
of convergence has been given in [9], but results are highly
dependent on parametrization of the gaussian kernel.

Another popular graph based semi-supervised learning
method was published by Belkin and Niyogi [2]. The main
idea is that a few preclassified input samples may not be
enough to confidently classify the remaining unclassified
input samples. Therefore, learning of underlying mani-
folds (in the sense of Riemannian manifolds) is done by
the help of all available input samples. As a model for such
a manifold serves a proximity graph whose nodes are the
input samples from X ⊂ R

n. Nodes i, j are connected
with an edge iff they are adjacent, i.e. the underlying in-
put samples xi, xj are sufficiently close. Edge weights
W = (wij)xi,xj∈X are derived from the distances between
the corresponding input samples. The so-called Laplacian
L(W ) is a symmetric, positive semidefinite matrix which
can be thought of as an operator on functions defined on
nodes of the proximity graph or on matrix W , respectively.
The eigenfunctions of the Laplacian provide a natural ba-
sis for functions on the manifold and the desired classifier
function c : X → {C1, ..., Ck} can be expressed in such a
basis.

4 Label propagation in Emergent
Self-Organizing Maps

As seen in section 3, class information in the form of label
vectors propagate through proximity graphs. In this sec-
tion, it is shown how label propagation can be realized on
top of an already trained SOM.

A Self-Organizing Map (SOM) consists of a finite set I

of neurons. To simplify matters, each neuron i ∈ I is a
joint index for a codebook vector mi ∈ R

n and a fixed
position pi ∈ N

2 on a regular grid. The SOM’s training al-
gorithm iteratively modifies the codebook vectors such that
they approximate distance and density structure of training
set X ⊂ R

n, and sufficiently retain their input space topol-
ogy on the low-dimensional grid.

There are two types of Self-Organizing Maps that can be
distinguished [6]: first, SOM in which each neuron repre-
sents a cluster of input samples. These maps can be thought
of as a variant of the k-means clustering algorithm. In these
SOM, the number of neurons somehow corresponds to the
number of clusters assumed in the input samples. In con-
trast to that, SOM may be used as tools for visualization
of structural features of the data space using U-Matrix and
P-Matrix techniques [6]. A characteristic of this paradigm
is the large number of neurons, usually several thousands.
These SOM allow the emergence of intrinsic structural fea-
tures of the data space on the map. Therefore, they are
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called Emergent Self-Organizing Maps (ESOM). For de-
tails on SOM and ESOM see [3] [6] [7]. In the following,
we will concentrate on ESOM.

In this paper, the method of Zhu [9] [10] is adapted as
follows. For each neuron i ∈ I , there is a label vec-
tor li ∈ [0, 1]k. The label vectors are seen as nodes in
a proximity graph whose edges’ weights are derived from
the pairwise distances of the ESOM’s neurons.

The measure for inter neuron distances is the so-called
u-distance [7]. The u-distance udist : I × I → R

+
0 is

defined as the minimal path length along grid-neighbouring
neurons (see equation 1). The u-distance is sensitive to the
neurons’ distances and incorporates the grid structure as
displayed by the U-Matrix.

udist(i, j) = min
(i=i1,...,ip=j)

p−1
∑

k=1

d(mik
,mik+1

) (1)

The edge weight between nodes i, j results as wij =

exp(−udist2(i,j)
σ2 ). The parameter σ acts as a radius that

defines how far label information may spread in the graph.
Radius σ is ideally chosen as the minimal inter-cluster dis-
tance. For estimation of σ in Emergent Self-Organizing
Maps see section 5.

Propagation of class labels through the proximity graph
is realized as follows: Nodes belonging to bestmatch-
ing neurons of preclassified input samples xi ∈ X with
c(xi) = Cq ∈ {C1, ..., Ck} have fixed label vectors li,
i.e. lij is 1 iff j equals q, otherwise it is set to zero. La-
bel vectors of unclassified neurons j are updated according
to equation 2 until the algorithm converges, i.e. no more
changes in (li)i∈I occur.

l′j =

∑

i∈I wij · li
∑

i∈I wij

(2)

This update mechanism strongly resembles the batch-map
learning rule [3] of the SOM whereas the edge weights wij

act as fixed neighbourhood function values and the label
vectors act as input samples. Obviously, Zhu’s label prop-
agation [9] and our proposed method are both analogies of
the batch-map technique.

5 Semi-supervised Clustering in
Emergent Self-Organizing Maps

As seen in section 4, our method produces an additional
label vector li ∈ [0, 1]k for each neuron i ∈ I . In
this section, label vectors are used for realization of semi-
supervised learning tasks in terms of clustering. Further-
more, a method on how to determine the crucial parameter
σ is proposed for Emergent Self-Organizing Maps.

A simple to realize application of ESOM-derived label vec-
tors is automatic clustering of unclassified input samples.

Let x ∈ X be an unclassified input sample that is assigned
to neuron bm(x) = arg mini∈I d(x,mi). In analogy to
other classifiers dealing with label vectors (see section 3) x

is assigned the class label with the highest value on its label
vector, i.e. c(x) = arg maxCj∈{C1,...,Ck} lbm(x),j . For an
example see figure 1(b).

A crucial problem [9], however, is defining a suitable prop-
agation parameter σ ∈ R

+. When σ → 0 the label prop-
agation method performs approximately like a k-nearest-
neighbour classifier with k = 1. When σ → ∞ the set of
label vectors effectively shrinks to a single point, i.e. all
unclassified input samples receive the same label vector.
Obviously, the appropriate σ is in between.

For estimation of σ we propose a simple method that
was loosely inspired by cost-benefit analysis and is based
on distribution analysis of U-Matrix heights [5]. U-Matrix
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(b) assignment of class labels

Figure 1: ”Tetra” data set [4] from the FCPS: (a)
toroidal U-Matrix with classified bestmatches, blurred
cluster boundaries (b) proposed lpSM method: neurons
classified according to label vectors, sharp decision bound-
aries obtained from a single preclassified input sample per
class
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heights denote local averages of inter neuron distances. U-
Matrix heights will be low on inner cluster neurons and
high on inter cluster neurons. Therefore, U-Matrix heights
are useful for detection of cluster borders and, in our case,
especially suitable for estimation of inter cluster distances,
such as the desired σ.

The radius σ should be as small as possible in order not
to spread the class information equally over the ESOM.
On the other hand, the coverage of σ dependent kernels
should be as big as possible in order to cover all neurons
of the corresponding cluster. An easy to obtain indicator
for coverage is the empirical cumulative distribution func-
tion ecdf(σ) ∈ [0, 1] of U-Matrix heights. From the defi-
nition, ecdf(σ) indicates the fraction of neurons that have
smaller distances towards their neighbours than σ. Thus,
ecdf(σ) denotes the fraction of neurons that are covered by
σ when spreading information towards immediately neigh-
bouring neurons. We choose σ as the U-Matrix height
value that minimizes the unrealized potential urp(σ), i.e.
σopt = arg minσ∈[σmin,σmax] urp(σ) with σmin (σmax)
being the minimal (maximal) height of the U-Matrix. The
unrealized potential of σ is defined as the euclidean dis-
tance between (σ, ecdf(σ)) and the hypothetically optimal
point (σmin, 100%) of minimal cost and maximal benefit
as seen in equation 3 and figure 2. Obviously, inter clus-
ter neurons lead to a saturation of the coverage curve and,
therefore, allow a meaningful estimation of σ. The basic
idea behind urp was introduced in [5] and has been ap-
plied in several domains. For illustration of convergence
with different values of σ see figure 3.

urp(σ) =

√

(

σ − σmin

σmax − σmin

)2

+ (1 − ecdf(σ))
2 (3)
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Figure 2: ”Chainlink” data set [4] from the FCPS: U-
Matrix heights’ distribution for estimation of propagation
radius σ by minimization of unrealized potential, percental
coverage against radius σ (solid line), minimal unrealized
potential (dotted line) and σopt (dashed line)
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(a) U-Matrix with partially preclassified bestmatches
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(b) decision boundaries with σ → 0 and σ → ∞
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(c) decision boundaries with estimated σopt

Figure 3: ”Chainlink” data [4] of FCPS (a) planar U-
Matrix with two well separated clusters, many unclassified
(black dots) and two preclassified (encircled) bestmatches
(b) classified neurons: decision boundaries obtained from
our label propagation method lpSM with too small or big σ

(c) classified neurons: decision boundaries obtained from
our label propagation method lpSM with σ correctly esti-
mated from U-Matrix heights’ distribution, classes corre-
spond to visible clusters on the U-Matrix

6 Experimental Settings and Results

In order to evaluate the automatic clustering abilities of
our so-called label propagation for Self-organizing Maps
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(lpSM) method, its clustering performance was measured.
The main idea is to use data sets on which the input sam-
ples’ true classification is known in beforehand. Clustering
accuracy can be evaluated as fraction of correctly classified
input samples.

The lpSM method is tested against the manifold learning
method of Belkin and Niyogi [2] which happens to be one
of the most elaborated techniques from the field of semi-
supervised learning. For each data set, both algorithms
only got a single randomly chosen input sample per class
with the true classification. The remaining samples are pre-
sented as unlabeled data.

The data comes from the fundamental clustering prob-
lem suite (FCPS). This is a collection of data sets for test-
ing clustering algorithms. Each data set represents a cer-
tain problem that any clustering algorithm should be able
to handle. For details see [4].

The Emergent Self-Organizing Maps were produced by
the online learning algorithm [3] using cone shaped learn-
ing environments during 30 epochs. The size of the grid is
50 × 82 nodes. The learning rate is kept constant at 0.1.

Comparative results can be seen in table 1. The lpSM
method clearly outperforms Belkin’s manifold learning al-
gorithm that supposedly suffers from its inability to recog-
nize density defined cluster shapes, e.g. the ”EngyTime”
and ”Wingnut” data.

7 Discussion

In this work, we described a novel approach (lpSM) to
semi-supervised cluster analysis using class label propaga-
tion on trained Emergent Self-Organizing Maps. To our
knowledge, this is the first approach that aims for the real-
ization of semi-supervised learning paradigms on basis of
unsupervised ESOM with label propagation techniques.

The lpSM method and Zhu’s label propagation method
obviously differ in two ways. First, our proposed distance

data set Belkin and lpSM
Niyogi

Atom 93 100
Chainlink 78 100
Hepta 100 100
Lsun 83 100
Target 53 87
Tetra 100 100
TwoDiamonds 75 95
Wingnut 70 90
EngyTime 57 96

Table 1: averaged percental clustering accuracy on FCPS
data sets [4] over hundred runs, lpSM method outperforms
laplacian manifold learning technique of Belkin and Niyogi
[2]

measure u-distance is ESOM specific and, therefore, takes
the visible grid structure into account. Finally, Zhu esti-
mates the radius σ according to the longest edge length
of a minimum spanning tree over all input samples. For
available outliers, this leads to an overestimation of inter
cluster distances and, therefore, poor classifications are the
results. In contrast to that, the σ estimation procedure of
lpSM relies on a distances’ distribution based criterion that
is supposedly robust against outliers.

Here, it has to be mentioned that any label propagation
method following the scheme depicted in section 3 relies
on the existance of a meaningful inter-cluster distance. If
this is not the case, e.g. spatial clusters with different levels
of scaling, the resulting classification may be misleading.

In contrast to most other clustering algorithms, the lpSM
system has no inherent assumption about cluster shapes be-
cause it relies on structures learned by the Emergent Self-
Organizing Map that is known for that [6]. The lpSM
method picks up the distance and density structure of the
ESOM’s neurons in order to reflect it faithfully in the space
of label vectors. This is realized using a modified batch-
map update rule (see section 4). The lpSM is even superior
to implicit manifold learning techniques, as demonstrated
in section 6.

The proposed update-mechanism depends on a single
parameter σ which acts as a radius for determination of
how far class labels are propagated through the set of label
vectors. For fixed σ the lpSM method converges which was
shown in [9] for a comparable approach. Choosing of σ is
crucial because results are highly dependent on a good es-
timation of an inter-cluster radius that effectively decreases
propagation in low density space in between clusters. A
practical estimation of σ can be derived from the distribu-
tion of U-Matrix heights.

8 Summary

In this paper, a novel method for semi-supervised cluster
analysis is presented, which means that input samples of
a given training set are partially classified. Topological
information of a trained Emergent Self-Organizing Map
(ESOM) is used in order to derive probabilistic class la-
bels for the input samples. For that purpose, each neuron is
enhanced with a vector of class probabilities. Class labels
are propagated from bestmatching neurons of preclassified
input samples to other neurons according to the underlying
proximity structure of the ESOM. Such labels are useful
for visualization and classification purposes. An estima-
tion procedure for crucial parametrization was derived. It
turned out that the distribution function of the U-Matrix
visualization technique is a suitable indicator for the prop-
agation radius.

Furthermore, it was shown that our proposed method
label propagation in Self-Organizing Maps (lpSM) out-
performs one of the most popular algorithms for semi-

5



supervised manifold learning on a set of fundamental clus-
tering problems.

9 Outlook and Future Work
As outlined by Zhu and Ghahramani [9] [10], estimation of
propagation radius σ is crucial for convergence of iterative
label propagation into a meaningful fixpoint. Instead of
choosing a global radius for every pair of entities, σ might
be chosen sensitive to the local distance and density struc-
ture of neurons. Localization of σ promises to be more
sensitive to variances in density.

As seen in section 4, label propagation is a special case
of the batch-map’s training method. Therefore, focus of our
research will be incorporation of label propagation tech-
niques into an online learning ESOM.

Another interesting aspect of unsupervised learning is its
connection to semi-supervised learning. Unsupervised seg-
mentation of a given ESOM into cluster representing sub-
sets of neurons can easily be accomplished by the semi-
supervised lpSM method if seed points are available for
each class. Such neurons are usually derived from density
estimations, e.g. the P-Matrix [6].
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