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Abstract— Learning Vector Quantization (LVQ) are
popular multi-class classification algorithms. Prototypes in
an LVQ system represent the typical features of classes in
the data. Frequently multiple prototypes are employed for
a class to improve the representation of variations within
the class and the generalization ability. In this paper, we
investigate the dynamics of LVQ in an exact mathematical
way, aiming at understanding the influence of the number
of prototypes and their assignment to classes. The theory
of on-line learning allows a mathematical description of the
learning dynamics in model situations. We demonstrate us-
ing a system of three prototypes the different behaviors of
LVQ systems of multiple prototype and single prototype
class representation.

1 Introduction

Learning Vector Quantization (LVQ) is a family of power-
ful and intuitive classification algorithms. LVQ is used in
many applications, including medical data or gene expres-
sions, and handwriting recognition [1]. Prototypes in LVQ
algorithms represent typical features within a data set us-
ing the same feature space instead of a black-box approach
as in many other classification algorithms, e.g. feedforward
neural networks or support vector machines. This approach
makes them attractive for researchers outside the field of
machine learning. Other advantages of LVQ algorithms are
(1) they are easy to be implemented for multi-class classi-
fication problems and (2) the algorithm complexity can be
adjusted during training as needed.

One widely used method in increasing this complexity is
by employing multiple prototypes in a class in order to im-
prove representation of variations within the class and gen-
eralization ability. However, the effectiveness of this strat-
egy and the influence of multiple prototypes on the learning
dynamics and performance of LVQ has not been studied
thoroughly.

In general, LVQ algorithms such as Kohonen’s original
LVQ1 are based on heuristics and many variants are devel-
oped without an associated cost function related to gener-

alization ability. There is a lack of theoretical understand-
ing of the learning behavior such as convergence, stability,
etc. In this paper we present a mathematical framework
to analyse typical LVQ learning behavior on model data.
While the model data considered here is certainly simplify-
ing compared to practical situations, it provides an insight
on idealized situations and a base for its extension to real-
life situations.

2 Algorithms
Let the input data at time step µ = 1, 2, . . . be given as
{ξµ, σµ}, ξµ ∈ IRN where N is the potentially high di-
mension of the data and σµ is the class of the data. Here
we investigate learning schemes with two classes σµ = ±1
(or ±). An LVQ system aims to represent the data using
a set of prototypes W = {w1, . . . ,wS} ∈ IRN and their
class labels C = {c1, . . . , cS} = ±1. To train the system, a
single example {ξµ, σµ} is generated at each learning step
according to an input density P (ξ) and presented sequen-
tially to the system. One or more prototypes wi are then
updated on-line as

wµ
i = wµ−1

i +
η

N
fi(d

µ
1 , . . . , dµ

S , σµ)(ξµ −wµ−1
i ) (1)

where η is the learning rate and dµ
i = (ξµ − wµ−1

i )2/2
is the Euclidean distance measure. Prototypes are always
moved towards or away from the example along the vector
(ξµ−wµ−1

i ). The direction and strength of update is speci-
fied by the modulation function fi(.). Here we present two
basic LVQ algorithms:

(1) LVQ1: The original formulation of LVQ by Kohonen
[8, 9] is an intuitive learning scheme that compromises
between data representation and finding the decision
boundary between classes. The closest prototype to
the example is determined. This so-called winner is
then moved towards the example if it is correct, ie. the
winner class label matches the class of the example,
or pushed away otherwise. The corresponding modu-
lation function is fi(.) = ciσ

µ if wi is the winner; 0
else.



(2) LVQ+/-: LVQ+/- aims for a more efficient separation
of prototypes with different classes and therefore bet-
ter generalization ability. This scheme is a simplified
version of LVQ2.1 proposed by Kohonen [7], omit-
ting the restriction of selecting only examples close
to the current decision boundary by a so-called win-
dow scheme. The two closest prototypes, say wJ and
wK , are determined. If their class labels are differ-
ent and one of them is correct, the correct prototype
is moved towards the data while the incorrect pro-
totype is pushed away. The modulation function is
fi(.) = ciσ

µ if i ∈ J,K and cJ 6= cK ; 0 else.

3 Model

We choose the model data as a mixture of two classes
σ = {±1} with the probability density function P (ξ) =∑

σ=±1 pσP (ξ|σ) with

P (ξ|σ) =
1

(
√

2π)N
exp

(
− 1

2
(ξ − λBσ)2

υσ

)
where pσ are the prior probabilities and p+ + p− = 1.
The distribution of each class is a spherical Gaussian clus-
ter. The components of vectors ξµ are random numbers
with mean vectors λBσ and variance υσ . The parameter λ
controls the separation between the mean vectors. Bσ are
orthonormal, i.e. Bi ·Bj = δi,j where δ is the Kronecker
delta.

Note that data from different classes strongly overlap.
They separate only on a two-dimensional space spanned
by B+ and B− and completely overlap on other sub-
spaces. The goal is to identify this separation from the
N -dimensional data.

4 Analysis

In this section we describe the methods to analyse the learn-
ing dynamics in LVQ algorithms. We give a brief descrip-
tion of the theoretical framework and refer to [3, 11] for
further details. Following the lines of the theory of on-line
learning, e.g. [5], the system can be fully described in terms
of a few so-called order parameters in the thermodynamic
limit N → ∞. A suitable set of characteristic quantities
for the considered learning model is:

Rµ
iσ = wµ

i ·Bσ Qµ
ij = wµ

i ·w
µ
j . (2)

Note that Riσ are the projections of prototype vectors wµ
i

on the center vectors Bσ and Qµ
ij correspond to the self-

and cross- overlaps of the prototype vectors. These quanti-
ties are called the order parameters.

From the generic update rule defined above, Eq. (1), we
can derive the following recursions in terms of the order

parameters:

Rµ
iσ −Rµ−1

iσ

1/N
= ηfi(.)

(
bµ
σ −Rµ−1

iσ

)
Qµ

ij −Qµ−1
ij

1/N
= η

[
fj(.)

(
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ij

)
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fi(.)
(
hµ
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ij

)]
+

η2fi(.)fj(.)(ξµ)2/N +
O(1/N) (3)

where the input data vectors ξµ enters the system as their
projections hµ

i and bµ
i , defined as

hµ
i = wµ−1

i · ξµ bµ
σ = Bσ · ξµ. (4)

In the limit N → ∞, the O(1/N) term can be neglected
and the order parameters self average [10] with respect to
the random sequence of examples. This means that fluctua-
tions of the order parameters vanish and the system dynam-
ics can be described exactly in terms of their mean values.

Also for N → ∞ the rescaled quantity t ≡ µ/N can
be conceived as a continuous time variable. Accordingly,
the dynamics can be described by a set of coupled ODE [3,
6] after performing an average over the sequence of input
data:

dRiσ

dt
= η

(
〈bσfi(.)〉 − 〈fi(.)〉Riσ

)
dQij

dt
= η

(
〈hifj(.)〉 − 〈fj(.)〉Qij + 〈hjfi(.)〉 −

〈fi(.)〉Qij

)
+ η2

∑
σ

pσυσ〈fi(.)fj(.)〉σ (5)

where 〈.〉 and 〈.〉σ are the averages over the density P (ξ)
and P (ξ|σ), respectively. Here we used the following rela-
tion to simplify the last term of Eq. (5):

lim
N→∞

〈ξ2〉
N

= lim
N→∞

1
N

∑
σ

pσ(υσN + λ2) =
∑

σ

pσυσ.

Exploiting the limit N → ∞ once more, the quantities
hµ

i , bµ
σ become correlated Gaussian quantities by means of

the Central Limit Theorem. Thus, the above averages re-
duce to Gaussian integrations in S + 2 dimensions. In
the simplest case of a system with two competing pro-
totypes, the averages can be calculated analytically. For
three or more prototypes, the mathematical treatment be-
comes more involved and requires multiple numerical inte-
grations. See [3, 11] for details of the computations.

Given the averages for a specific modulation function
f(.) we obtain a closed set of ODE. Using initial conditions
{Riσ(0), Qij(0)}, we integrate this system for a given al-
gorithm and get the evolution of order parameters in the
course of training, {Riσ(t), Qij(t)}. Also the generaliza-
tion error εg is determined from {Riσ(t), Qij(t)} as fol-
lows:

εg =
∑

σ=±1

pσ〈fi(.)〉−σ (6)
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where fi(.) = 1 if wi is the winner; 0 else. We thus ob-
tain the learning curve εg(t) which quantifies the success
of training. This method of analysis shows excellent agree-
ment with Monte Carlo simulations of the learning system
for dimensionality as low as N = 200, as demonstrated in
[2, 6].

5 Results
The dynamics of LVQ algorithms for a system with two
prototypes and two classes have been investigated in an
earlier publication [2]. Here we discuss an important exten-
sion to three prototypes which allows multiple prototypes
to be assigned within one class. It is interesting to observe
whether this assignment gives an advantage over the sim-
pler single prototype per class and to search for optimal
assignments.

5.1 Competition within classes
The combination of behavior from competing prototypes
within a class and between different classes is not straight-
forward. We begin by investigating the effects of com-
petition between multiple prototypes within a class in the
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Figure 1: Top panel: Order parameter Riσ(t), Qij(t) dur-
ing training using LVQ1 with p+ = 1 (only one class
present), η = 0.1, λ = 1 and υ+ = 0.81. The system is
initialized using random prototypes. Crosses mark the cor-
responding quantities from Monte Carlo simulations using
an artificial data set with similar parameters and N = 50.
Bottom panel: The projection of the prototypes on the
plane spanned by B+, B−. The cross marks the class cen-
ter λB+.

LVQ1 algorithm. Here we introduce a one-class problem
(formally p+ = 1, p− = 0) and two competing prototypes
W = w1, w2 with the same class label c1 = c2 = +1.
Without the presence of other classes, prototypes within the
same class behave like in unsupervised vector quantization.
The prototypes are initialized randomly.

The evolution of the order parameters are depicted in
Fig. 1. Although formally the analysis uses the limit N →
∞, we show that they are already in good agreement with
Monte Carlo simulations using an artificial data set with di-
mensionality N = 50. The prototypes gradually approach
the class center λB+ and the system reaches a configura-
tion with order parameters R1σ = R2σ = λ, Q11 = Q22.
However, Eq. 2 and Q11 > λ2, Q12 6= Q11 indicate that
the prototypes are not identical vectors located at the exact
class center λB+, but instead they spread out symmetri-
cally in an arbitrary direction. While this behavior pro-
duces better data representation [12], its relation to classi-
fication ability is not yet clear.

5.2 Optimal class assignment in LVQ1

Now we consider a system with three prototypes with two
classes σ = ±1. The prior probabilities p+, p− and vari-
ance υ+, υ− are set with unequal values in order to break
the symmetry between the two classes. As shown in the
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Figure 2: LVQ1 with η = 0.01, λ = 1, p+ = 0.6, υ+ =
0.81, υ− = 0.25, t̃ = ηt = 15. Top panel: Trajectories
of the three prototypes with C1 = {+,+,−} (solid line,
©) and C2 = {+,−,−} (dashed line, 4). Bottom panel:
The corresponding learning curves εg(t) with C1, C2 and
two prototypes with C3 = {+,−} (dotted lines).
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top panel of Fig. 2, the class labels of the three prototypes
can be assigned in two different sets, which are named for
shorthand C1 = {+,+,−} or C2 = {+,−,−}. Here the
parameters are λ = 1, p+ = 0.6, υ+ = 0.81, υ− = 0.25.

We compare the generalization errors between the two
sets and also to a two prototype system with C3 = {+,−}
in the bottom panel of Fig. 2. In principle, additional pro-
totypes provide the system with more degrees of freedom
and allow for more complex decision boundaries. Thus,
in an optimal configuration, the generalization error could
be lower or at least equal to systems with less prototypes.
We indeed observe this result with C1 where the three-
prototype system outperforms the two-prototype system.
However, surprisingly, the generalization error with differ-
ent class assignments C2 is higher.

Figure 3 shows more general results with the asymp-
totic generalization error εg(t → ∞), i.e. for small learn-
ing rates and arbitrary many examples t → ∞, η → 0,
ηt →∞. The performances of different sets are compared
as a function of p+ for unequal variances υ+ > υ−. The set
C1 produces the best results while C2 produces the largest
errors. Note that this is valid at all p+ and therefore the
best choice of class labels does not depend on prior proba-
bilities.

Also in Fig. 3, The performances are compared to the
best achievable generalization error. For bimodal Gaus-
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Figure 3: The asymptotic generalization error as a function
of p+ with other parameters similar as in Fig. 2 for sets C1,
C2 (×) and a two-prototype system S = 2, C3 (©). The
lowest achievable error for the respective sets are shown by
the dotted line and chain line.

sian distributions, this optimal decision boundary is hyper-
quadric [4] where the condition p+P (ξ|+) = p−P (ξ|−)
is satisfied. The shape depends on the variance of both
classes, viz. υ+, υ−. In the case υ+ = υ− the decision
boundary is a hyperplane, which can be reproduced exactly
using two prototypes and so two-prototype systems are al-
ready optimal for classification. For unequal variances, e.g.
υ+ > υ− it is a concave subspace from λB+ and con-
vex subspace from λB−. Multiple prototypes in one class
allow for a piecewise decision boundary and a better ap-
proximation of the optimal decision boundary. However in
a three-prototype system, the decision boundary can only
form a convex, wedge-shaped subspace in the class with
the single prototype. Therefore the performance can be im-
proved only if two prototypes are assigned to the class with
larger variance.

Another observation is shown in Fig. 4, where υ− = 1
and the priors are fixed as equal p+ = p− (top panel) or
p+ > p− (bottom panel). Based on the asymptotic gener-
alization errors, the optimal choice of class assignments de-
pends on υ+, which are divided in three stages: S = 3, C2

(in the top panel, at υ+ < 0.8), S = 2 (at 0.8 < υ+ < 1.3)
and S = 3, C1 (at υ+ > 1.3). Note that the lines of C1
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Figure 4: Asymptotic generalization error as a function of
υ+ where υ− = 1. The prior probabilities are set equal
p+ = 0.5 in the top panel and p+ = 0.75 in the bottom
panel The two prototype system is the optimal choice when
υ+ is close to υ−. C1 is best when υ+ > υ− and C2 is
best when υ+ < υ−. Vertical lines indicate regions where,
respectively from left to right, C2, C3 and C1 produce the
best performance.
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and C2 intersect at equal variance υ+ = υ− = 1. The
behavior is the same for the case of classes with unequal
priors, with the three stages shifting towards lower υ+:
S = 3, C2 (υ+ < 0.45), S = 2 (at 0.45 < υ+ < 0.8)
and S = 3, C1 (at υ+ > 0.8). These results can be inter-
preted as (1) multiple prototypes should be assigned to the
class with higher variance, which becomes more apparent
for largely unequal variance and (2) near equal variances,
the two prototype system is already optimal.

To summarize, using the LVQ1 algorithm, multiple pro-
totype systems do not always perform better than simpler
single prototype systems, i.e. does not always reduce the
generalization error. The LVQ1 algorithm does not explic-
itly find the minimum generalization error. Also, it has a
data representation part as explained in section 5.1. This
part however can have negative contribution to classifica-
tion purposes, e.g. in cases of assigning more prototypes to
the class with equal or less or similar variance in the model
scenario.

5.3 Stability in LVQ+/-

The LVQ+/- is known to be subject to divergence and sta-
bility problems for classes with unequal weights [2]. Proto-
types representing the weak classes, ie. the class with lower
prior probability, are pushed away frequently by examples
of the stronger classes. Without any modifications, the at-
traction from its own class is outweighed by this repulsion
and the system diverges exponentially.

In a two-prototype system, the system becomes highly
divergent at all priors except for the singular case of bal-
anced priors [2]. The condition that two nearest prototypes
have different classes is always met, and so both prototypes
are always updated for each example. On the other hand,
in a system with multiple prototypes per class, it is possi-
ble that the two nearest prototypes belong to the same class
and no update is performed. The result is that the system is
more stable, although problems still exist.

An example of a three-prototype system is shown in Fig.
5 for λ = 1, υ+ = υ− = 1.0 and unbalanced priors
p+ = 0.6, p− = 0.4. In the top panel, the set of class
label is C1 = {+,+,−}, ie. two prototypes are assigned
to the stronger class. The characteristic quantities increase
linearly for Riσ and quadratically for Qij with the learning
time t. The prototype move toward infinity as t →∞. Al-
ternately if the labels are C2 = {+,−,−}, the system is
highly divergent. The characteristic quantities for the two
prototype increase exponentially as in the two-prototype
system. It is better to assign more prototypes to the stronger
class if stability is the main concern.

Several methods have been developed to counter this di-
verging behavior, e.g. window schemes [9]. One conceptu-
ally simple approach is an early stopping scheme. Here the
learning process is terminated when the system reaches its
lowest generalization error and before the performance de-
teriorates. However, the achievable generalization ability
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Figure 5: Evolution of Qij for LVQ+/- with η = 0.05, λ =
1, υ+ = υ− = 1.0 and p+ = 0.6. The classes are C1 (top
panel) and C2 (bottom panel). The system displays highly
divergent behavior in the case of C2.

is highly dependent on the initial conditions. The training
process becomes a race between the system finding the op-
timal set before the instability problems occur.

5.4 Integrated algorithms

While the LVQ1 algorithm is intuitive and fast in finding
the structure of the data, LVQ+/- is specifically designed
for classification purposes. However, the performance of
LVQ+/- varies depending on the initial conditions and the
training process can have instability problems. Here we
combine the advantages of each algorithm by initially us-
ing LVQ1 to its asymptotic configuration. Afterwards we
switch to LVQ+/- with early stopping using the same con-
figuration to fine tune the decision boundary. The perfor-
mance after the LVQ+/- can only be better or at least equal
than that of LVQ1 because of the early stopping method.

Figure 6 shows the achievable generalization error as a
function of the prior probabilities. The variance of each
class is υ+ = 0.81, υ− = 0.25. In the top panel, the
LVQ+/- does not improve the performance of LVQ1. The
LVQ1 already performs very well because the class assign-
ments are already optimal, ie. assigning more prototypes
on the class with larger variance. On the contrary, the
LVQ+/- produces significantly lower generalization errors
than LVQ1 when υ+ < υ−. LVQ+/- is not as dependent
on correct class assignments as LVQ1. Note that for small
p+, LVQ+/- with C2 rapidly diverges and does not provide
advantage over the LVQ1.
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Figure 6: Generalization error achieved using LVQ1 and
then LVQ+/- with early stopping for υ+ = 0.81, υ− =
0.25, η = 0.1, after t̃ = 500 for LVQ1 and t̃ = 5 for the
adjustments by LVQ+/-. Top panel: C1 = {+,+,−}. The
plots of LVQ1 and LVQ+/- coincide ie. LVQ+/- does not
provide any advantage. Bottom panel: C2 = {+,−,−}.
LVQ+/- improves the performance because it is less sensi-
tive to suboptimal class assignments.

6 Summary

We investigated the learning dynamics of LVQ algorithms,
including LVQ1 and LVQ+/-, for high dimensional data
and multiple prototypes within a class. While LVQ1 aims
to both represent the data well and good generalization
ability, the two goals do not always agree with one an-
other. Introducing multiple prototypes to the system im-
proves representation but may have positive or negative ef-
fect on the generalization ability.

The class assignments are vital in the performance of
LVQ1 and it is closely related to the structure of the data.
The important feature to improve generalization is by as-
signing the additional prototype(s) to classes with larger
variance, and not related explicitly to the prior probabili-
ties. This feature of LVQ1 is useful when there is prior
knowledge or hypothesis on the relative variations of dif-
ferent classes.

LVQ+/- with early stopping is less sensitive to subop-
timal prototype class assignments and can achieve better
performance than LVQ1 in these cases. However, instabil-
ity remains the main problem in this learning method. As-
signing multiple prototypes on a strong class slows down
but does not solve the issue of divergence.

Further research is directed amongst others toward more
complex and realistic data structures. Also, one should
investigate probabilistic labeling where the classes are
learned during the course of training. This would avoid
the problem of incorrectly adding complexity with mini-
mal benefits or even lower performance.
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