Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Zugang zum Dokument



Decision Manifolds: Classification Inspired by Self-Organization

Pƶlzlbauer, Georg ; Lidy, Thomas ; Rauber, Andreas




Abstract:
We present a classifier algorithm that approximates the decision surface of labeled data by a patchwork of separating hyperplanes. The hyperplanes are arranged in a way inspired by how Self-Organizing Maps are trained. We take advantage of the fact that the boundaries can often be approximated by linear ones connected by a low-dimensional nonlinear manifold. The resulting classifier allows for a voting scheme that averages over the classifiction results of neighboring hyperplanes. Our algorithm is computationally efficient both in terms of training and classification. Further, we present a model selection framework for estimation of the paratmeters of the classification boundary, and show results for artificial and real-world data sets.


Schlagwörter: Decision Manifolds, supervised learning, ensemble classification
Beteiligte Einrichtung: Technische Fakultät, Arbeitsgruppen der Informatik
DDC-Sachgruppe: Datenverarbeitung, Informatik

Zitat-Vorschlag:
Pƶlzlbauer, Georg ; Lidy, Thomas ; Rauber, Andreas  (2007)  Decision Manifolds: Classification Inspired by Self-Organization.


URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2007/131



 Fragen und Anregungen an: publikationsdienste.ub@uni-bielefeld.de
 Letzte Änderung: 15.2.2011
 Impressum
OPUS-Logo     OAI-zertifiziert      Universitätsbibliothek Bielefeld
OAI-Logo