Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Zugang zum Dokument



Dimensionality Reduction of very large document collections by Semantic Mapping

CorrĂȘa, Renato Fernandes ; Ludermir, Teresa Bernarda




Abstract:
This paper describes improving in Semantic Mapping, a feature extraction method useful to dimensionality reduction of vectors representing documents of large text collections. This method may be viewed as a specialization of the Random Mapping, method proposed in WEBSOM project. Semantic Mapping, Random Mapping and Principal Component Analysis (PCA) are applied to categorization of document collections using Self-Organizing Maps (SOM). Semantic Mapping generated document representation as good as PCA and much better than Random Mapping.


Schlagwörter: Document Clustering, Dimensionality Reduction, Semantic Mapping
Beteiligte Einrichtung: Technische Fakultät, Arbeitsgruppen der Informatik
DDC-Sachgruppe: Datenverarbeitung, Informatik

Zitat-Vorschlag:
CorrĂȘa, Renato Fernandes ; Ludermir, Teresa Bernarda  (2007)  Dimensionality Reduction of very large document collections by Semantic Mapping.


URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2007/133



 Fragen und Anregungen an: publikationsdienste.ub@uni-bielefeld.de
 Letzte Änderung: 15.2.2011
 Impressum
OPUS-Logo     OAI-zertifiziert      Universitätsbibliothek Bielefeld
OAI-Logo