Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Zugang zum Dokument

SOM-based Peptide Prototyping for Mass Spectrometry Peak Intensity Prediction

Scherbart, Alexandra ; Timm, Wiebke ; Böcker, Sebastian ; Nattkemper, Tim W.

In todays bioinformatics, Mass spectrometry (MS) is the key technique for the identification of proteins. A prediction of spectrum peak intensities from pre computed molecular features would pave the way to better understanding of spectrometry data and improved spectrum evaluation. We propose a neural network architecture of Local Linear Map (LLM)-type based on Self-Organizing Maps (SOMs) for peptide prototyping and learning locally tuned regression functions for peak intensity prediction in MALDI-TOF mass spectra. We obtain results comparable to those obtained by nu-Support Vector Regression and show how the SOM learning architecture provides a basis for peptide feature profiling and visualisation.

Schlagwörter: Peak Intensity Prediction, Self-Organizing Map, Local Linear Map, Maldi-MS
Beteiligte Einrichtung: Technische Fakultät, Arbeitsgruppen der Informatik
DDC-Sachgruppe: Datenverarbeitung, Informatik

Scherbart, Alexandra ; Timm, Wiebke ; B√∂cker, Sebastian ; Nattkemper, Tim W.  (2007)  SOM-based Peptide Prototyping for Mass Spectrometry Peak Intensity Prediction.

URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2007/150

 Fragen und Anregungen an: publikationsdienste.ub@uni-bielefeld.de
 Letzte Änderung: 15.2.2011
OPUS-Logo     OAI-zertifiziert      Universitätsbibliothek Bielefeld