Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Zugang zum Dokument



Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection

Ger贸nimo, David ; Sappa, Angel D. ; L贸pez, Antonio ; Ponsa, Daniel

The 5th International Conference on Computer Vision Systems, 2007
Bielefeld, 21. - 24. März 2007


Abstract:
On-board pedestrian detection is in the frontier of the state-of-the-art since it implies processing outdoor scenarios from a mobile platform and searching for aspect-changing objects in cluttered urban environments. Most promising approaches include the development of classifiers based on feature selection and machine learning. However, they use a large number of features which compromises real-time. Thus, methods for running the classifiers in only a few image windows must be provided. In this paper we contribute in both aspects, proposing a camera pose estimation method for adaptive sparse image sampling, as well as a classifier for pedestrian detection based on Haar wavelets and edge orientation histograms as features and AdaBoost as learning machine. Both proposals are compared with relevant approaches in the literature, showing comparable results but reducing processing time by four for the sampling tasks and by ten for the classification one.


Schlagwörter: pedestrian detection, advanced driver assistance systems, haar wavelets, edge orientation histograms, adaboost
Beteiligte Einrichtung: Technische Fakultät, Arbeitsgruppen der Informatik
DDC-Sachgruppe: Datenverarbeitung, Informatik

Zitat-Vorschlag:
Ger贸nimo, David ; Sappa, Angel D. ; L贸pez, Antonio ; Ponsa, Daniel  (2007)  Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection. The 5th International Conference on Computer Vision Systems, 2007


URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2007/8



 Fragen und Anregungen an: publikationsdienste.ub@uni-bielefeld.de
 Letzte Änderung: 15.2.2011
 Impressum
OPUS-Logo     OAI-zertifiziert      Universitätsbibliothek Bielefeld
OAI-Logo