Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Access to the Document

Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing

Sun, Peng ; Guo, Jiong ; Baumbach, Jan

Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516)

Download file

The explosion of biological data has largely influenced the focus of today's biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.

Institution: Faculty of Technology, Research Groups in Informatics
DDC classification: Data processing, computer science, computer systems

Suggested Citation:
Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing. Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516), 9(2): Special Issue: 7th International Symposium on Integrative Bioinformatics, Hangzhou, China, 2012

Online-Journal: http://journal.imbio.de/article.php?aid=197
URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2012/5224

 Questions or comments: publikationsdienste.ub@uni-bielefeld.de
 Latest update: 15 Feb 2011
 Legal Notice
OPUS-Logo     OAI compliant      BU Logo