Universität Bielefeld Electronic Collections animiertes Foto Universität Bielefeld

Zugang zum Dokument



Feature Fusion Based SVM Classifier for Protein Subcellular Localization Prediction

Rahman, Julia ; Mondal, Nazrul Islam ; Islam, Khaled Ben ; Hasan, Al Mehedi

Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516)



Abstract:
For the importance of protein subcellular localization in different branch of life science and drug discovery, researchers have focused their attentions on protein subcellular localization prediction. Effective representation of features from protein sequences plays most vital role in protein subcellular localization prediction specially in case of machine learning technique. Single feature representation like pseudo amino acid composition (PseAAC), physiochemical property model (PPM), amino acid index distribution (AAID) contains insufficient information from protein sequences. To deal with such problem, we have proposed two feature fusion representations AAIDPAAC and PPMPAAC to work with Support Vector Machine classifier, which fused PseAAC with PPM and AAID accordingly. We have evaluated performance for both single and fused feature representation of Gram-negative bacterial dataset. We have got at least 3% more actual accuracy by AAIDPAAC and 2% more locative accuracy by PPMPAAC than single feature representation.


Beteiligte Einrichtung: Technische Fakultät, Arbeitsgruppen der Informatik
DDC-Sachgruppe: Datenverarbeitung, Informatik

Zitat-Vorschlag:
Rahman, Julia ; Mondal, Nazrul Islam ; Islam, Khaled Ben ; Hasan, Al Mehedi  (2016)  Feature Fusion Based SVM Classifier for Protein Subcellular Localization Prediction. Journal of Integrative Bioinformatics - JIB (ISSN 1613-4516), 13(1), 2016

Online-Journal: http://journal.imbio.de/article.php?aid=288
URL: http://biecoll.ub.uni-bielefeld.de/volltexte/2017/5430



 Fragen und Anregungen an: publikationsdienste.ub@uni-bielefeld.de
 Letzte Änderung: 23.06.2015
 Impressum
OPUS-Logo     OAI-zertifiziert      Universitätsbibliothek Bielefeld
OAI-Logo