Computational miRNomics

Jens Allmer^{1,2,*}, Malik Yousef³

¹Computer Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey

²Bionia Incorporated, IZTEKGEB A8, Urla, Izmir, Turkey

³Community Information Systems, Zefat Academic College, Zefat, 13206, Israel

Editorial

The term MicroRNA or its contraction miRNA currently appears in 21,215 titles of abstracts, published between 1997 and now, available on Pubmed (2016-21-22:12:59 EET). 4,108 of these were published in 2016 alone which signifies the importance of miRNA-related research. MicroRNAs can be detected experimentally using various techniques like directional cloning of endogenous small RNAs but they are time consuming [1]. Additionally, it is necessary for the miRNA and its mRNA target(s) to be co-expressed to infer a functional relationship which is difficult, if not impossible, to achieve [2]. Since experimental approaches are facing such difficulties, they have been complemented by computational approaches [3] thereby defining the field of computational miRNomics. Due to the rapid development in the discipline, it is important to assess the state-of-the-art. In this special issue, several areas of the field are investigated ranging from pre-miRNA detection via machine learning to application of differential expression analysis in plants. First, Saçar Demirci et al. discuss an approach to virus pre-miRNA detection using machine learning [4]. Such approaches are based on parameterization of miRNAs and Yousef et al. discuss how to select among such features [5]. A different computational perspective is provided by Kotipalli et al. who model the kinetics of miRNA genesis and targeting [6]. To fuel more refined future models for genesis and targeting, it is important to establish miRNA and target expression under varying conditions. Zhang et al. [7] and Kanke et al. [8] discuss two approaches to quantify miRNAs and other non-coding short RNAs. Diler et al., finally, discuss actual biological implications of differentially expressed miRNAs [9]. This special issue on computational miRNomics, thus, provides a trajectory from detection of pre-miRNAs to biological implications of differentially expressed miRNAs. Additional topics will be covered in the upcoming second volume of the special issue on computational miRNomics.

References

- [1] K. L. S. Ng and S. K. Mishra. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics, 23(11):1321–30, Jun. 2007.
- [2] M. D. Saçar and J. Allmer. Current Limitations for Computational Analysis of miRNAs in Cancer. Pakistan Journal of Clinical and Biomedical Research, 1(2):3–5, 2013.
- [3] J. Allmer and M. Yousef. Computational methods for ab initio detection of microRNAs. Frontiers in Genetics, 3:209, Jan. 2012.
- [4] M. D. Saçar Demirci, M. Toprak, and J. Allmer. A Machine Learning Approach for MicroRNA Precursor Prediction in Retro-transcribing Virus Genomes. Journal of Integrative Bioinformatics, 13(5):303, 2016.

^{*} To whom correspondance should be addressed. Email: jens@allmer.de

Journal of Integrative Bioinformatics, 13(5):302, 2016

- [5] M. Yousef, W. Khalifa, and L. AbdAllah. Ensemble Clustering Classification Applied to Competing SVM and One-Class Classifiers Exemplified by Plant MicroRNAs Data. Journal of Integrative Bioinformatics, 13(5):304, 2016.
- [6] A. Kotipalli, R. Gutti, and C. K. Mitra. Dynamics of miRNA biogenesis and nuclear transport. Journal of Integrative Bioinformatics, 13(5):305, 2016.
- [7] J. Zhang, H. Hadj-Moussa, and K. B. Storey. Current Progress of High-Throughput MicroRNA Differential Expression Analysis and Random Forest Gene Selection for Model and Non-Model Systems: an R Implementation. Journal of Integrative Bioinformatics, 13(5):306, 2016.
- [8] M. Kanke, J. Baran-Gale, J. Villanueva, and P. Sethupathy. miRquant 2.0: an Expanded Tool for Accurate Annotation and Quantification of MicroRNAs and their isomiRs from Small RNA-Sequencing Data. Journal of Integrative Bioinformatics, 13(5):307, 2016.
- [9] E. Diler, T. Unver, and G. Karakülah. Differential Expression of Hyperhydricity Responsive Peach MmicroRNAs. Journal of Integrative Bioinformatics, 13(5):308, 2016.