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Abstract 
 

Purpose: 
To demonstrate how the information extracted from scientific text can be directly used in 
support of life science research projects. In modern digital-based research and academic 
libraries, librarians should be able to support data discovery and organization of digital 
entities in order to foster research projects effectively; thus we speculate that text mining and 
knowledge discovery tools could be of great assistance to librarians. Such tools simply 
enable librarians to overcome increasing complexity in the number as well as contents of 
scientific literature, especially in the emerging interdisciplinary fields of science. In this paper 
we present an example of how evidences extracted from scientific literature can be directly 
integrated into in silico disease models in support of drug discovery projects. 
 
Design/methodology/approach: 
The application of text-mining as well as knowledge discovery tools are explained in the form 
of a knowledge-based workflow for drug target candidate identification. Moreover, we 
propose an in silico experimentation framework for the enhancement of efficiency and 
productivity in the early steps of the drug discovery workflow. 
 
Findings: 
Our in silico experimentation workflow has been successfully applied to searching for hit and 
lead compounds in the World-wide In Silico Docking On Malaria (WISDOM) project and to 
finding novel inhibitor candidates.  
 
Practical implications: 
Direct extraction of biological information from text will ease the task of librarians in 
managing digital objects and supporting research projects. We expect that textual data will 
play an increasingly important role in evidence-based approaches taken by biomedical and 
translational researchers. 
 
Originality / value: 
Our proposed approach provides a practical example for the direct integration of text- and 
knowledge-based data into life science research projects, with the emphasis on its 
application by academic and research libraries in support of scientific projects. 
 
Paper type: 
Conceptual paper 
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1. Introduction 

The Life Sciences (biology, biochemistry, medicine) are still dominated by empirical 

observations. Because of this empirical nature of the life sciences there is a flood of 

descriptive publications in this domain. Besides a remarkable increase in the complexity of 

the scientific content of life science publications (e.g. observations that cross the borders of 

traditional disciplines, indicated by new journals with names such as NATURE Chemical 

Biology), the number of journals is also growing fast. Approximately 13,000 biomedical 

journals are being published currently throughout the world, among which more than 5000 

are currently indexed for MEDLINE in the fields of biomedicine and life sciences 

(www.nlm.hin.gov/pubs/factsheets). Moreover, about 120 new journals are added to 

MEDLINE every year (Kotzin, 2005). This increasing volume of information poses a great 

challenge to life scientists to search, retrieve and extract relevant data in an efficient and 

reliable manner. In response to this challenge, automated methods for information retrieval 

and information extraction (“text mining”) have been developed and continuously improved. 

These technologies have recently reached a degree of maturity that enhances the 

searchability of traditional information retrieval systems through different techniques such as 

query refinement, semantic searching, document clustering and categorization, and 

summarization (Mack and Hehenberg, 2002). However, the indispensable part of information 

retrieval (IR) systems is information extraction (IE), which is intended to identify and extract 

specific biological terms (named entity recognition, NER) and their relationships 

automatically. IE techniques are evolving at a faster pace recently, making use of the rapid 

development of semantic annotations and ontologies, which help to classify mentions of text 

entities and enable true semantic search by mapping named entities to classes of entities 

(e.g. the named entity “Alzheimer” belongs to the class “diseases”). Unstructured information 

sources such as scientific text are rich in useful information on e.g. diseases and their 

molecular etiology. Such information is often represented in text by associations among 

similar or different biological entities (i.e. genes, proteins, drugs, allelic variants, etc). In 

addition to their capability to retrieve and extract “direct relationships” among biological 

entities (e.g. published facts), text-mining techniques can be leveraged to detect ‘invisible’ 

patterns or ‘indirect’ associations among different entity types. For example, if protein A 

interacts with protein B and protein B interacts with protein C, it can be inferred that protein A 

might also interact with protein C in a complex. Therefore, text mining can be used to 

enhance data mining capabilities. As such, it would be interesting to mine indirect 

associations, for example, between drug-drug, drug-pathway, drug-marker, and drug-clinical 

outcome information. In this paper, we explain how the information extracted from scientific 

text can be directly incorporated into the process of modeling pathogenesis and simulation of 

in silico experiments using computational tools and high-performance computing 

infrastructures. 
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2. Technologies used for information extraction from text and images 

Technologies for Information extraction (IE) which are currently widely used are based on 

two approaches: natural language processing (NLP) and statistical methods, namely co-

occurrence of entities (Jensen et al., 2006). Using NLP methods, biomedical information 

within free text is mined through part-of-speech (POS) taggers or part-of-speech stemmers. 

While the first method labels each word in the sentence according to its grammatical 

position, the second one recognizes the morphological root of the word (stemming).  

Since information extraction deals with the semantic structure of the text, the first step toward 

IE is to identify and tag biological entities in the text; this process, which is called “named 

entity recognition” (NER), is an active area of research due to the increasing complexity of 

biomedical language and vocabulary (Krallinger et al., 2005). Rule-based methods, 

dictionary-based approaches or a combination of these two techniques are often used for 

information extraction from the text. Table 1 lists different methods which are currently used 

for IE purposes in the life sciences domain.  

 

Table 1. List of different methods that are applied to Information Extraction 

IE methods Approach 
Rule-based pattern extraction  Learned regular expression 

patterns 
Sequence tagging by machine 
learning 

Probabilistic sequence models 
(HMM*, CRF**), induced 
classifiers 

Dictionary-based pattern 
matching 

Named entity recognition 

       * Hidden Markov Models (Rabiner, 1989) 
** Conditional Random Fields (Lafferty et al., 2001) 
 
A prerequisite for IE is entity recognition which is considered one of the most challenging 

areas in text mining, mainly due to the lack of standard naming (Jensen et al., 2006).  

Abbreviations and synonyms, which represent biological named entities in the text should be 

distinguished from the background; for instance, the gene name “AR” which stands for 

androgen receptor should be distinguished from the acronym for “Arkansas state”.   

Therefore, recent systems are supported by ontologies or dictionaries containing a 

comprehensive list of synonyms in order to reduce the number of false positives; for 

example, ProMiner developed at Fraunhofer Institute for Algorithms and Scientific 

Computing, SCAI, (Hanisch et al., 2005) is a rule-based system that is supported by regularly 

updated organism-specific dictionaries. The system resolves the ambiguities using context 

information and is aware of acronyms (Figure 1).  
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Figure 1. Visualization of ProMiner performance on recognition of biological named entities. 
In this example, the word “CAT” has been correctly detected as gene name for Catalase; 
genes/proteins, drugs, and disease are also highlighted by gray 
 

As well as free text, images constitute another source of relevant information, which is 

frequently found in publications, especially in the chemical and biochemical domain. The 

above-mentioned text mining technologies have contributed significantly to the progress of 

recognition and extraction of chemical named entities from text and image captions, but the 

big challenge with chemical structure depictions is how to convert a structural image to a 

computer readable structure representation format; such structural data can be stored in 

searchable databases and used for drug discovery purposes (Banville, 2006).  The first 

attempts at automated extraction of chemical structure information from images and their 

conversion into computer readable chemical structure representation formats appeared in 

the 1990s (McDaniel and Balmuth, 1992). A commercial tool for extraction of chemical data 

from literature, CLiDE, (standing for “chemical literature data extraction”) was developed in 

the middle of the 1990s (Ibison et al., 1993). Very recently, an advanced tool for chemical 

structure mining (chemoCRTM) has been developed at Fraunhofer Institute SCAI. chemoCR 

combines pattern recognition techniques with supervised machine-learning concepts and a 

chemical expert system in order to identify the most significant semantic entities (e.g. chiral 

bonds, super atoms, reaction arrows, etc.) from chemical depictions. The system is still being 

improved, but the current version is now “production ready”, meaning that chemical 

structures can be directly used as input into in silico experimentation such as virtual 

screening.  

 

 

 



 5

3. Direct application of extracted data from text to in silico experiments 

Given such considerable advancements in information extraction from text and images, one 

might ask how these data extracted from the literature can be used to enhance our 

understanding and knowledge in the biomedical domain. In their review, Krallinger et al. 

(2005) point out four applications for text mining, namely functional annotation of genes and 

proteins, extraction of subcellular localizations, statistical analysis of gene expression 

articles, and prediction of protein-protein interactions. Among these applications, the 

statistical approaches have been extended to annotating the content of expression 

databases; for example, very recently Ruau et al. (2008) used ProMiner (Hanisch et al., 

2005) to annotate data entries (biological sample information) in the Gene Expression 

Omnibus (GEO) microarray repository by employing text-mining and expression profile 

correlation. In this way, the annotation process could be automated.  

In addition to the usage scenarios mentioned by Krallinger et al. (2005), we foresee that 

extracted data from scientific publications can be directly used in in silico experiments. An in 

silico experiment has been defined as “a procedure that uses computer-based information 

repositories and computational analysis to test a hypothesis, derive a summary, search for 

patterns, or demonstrate a known fact” (Foster and Kesselman, 1999). In other words, an in 

silico experiment involves the use of local and remote resources to test a hypothesis 

(Stevens et al., 2003). Since biological systems comprise of dynamic interactions between 

non-linear processes on tempo-spatial scales, their analysis and modeling requires 

integration of all relevant information at multiple levels from molecular and cellular to organ 

levels. For this reason, life scientists frequently need to collect information from different 

databases such as EntrezGene, SwissProt, or PDB (Protein Data Bank), and use them in 

combination in order to be able to test their hypotheses in the in silico environment before 

they proceed to the more expensive and time-consuming experimental lab work. Therefore, 

computer models and simulation environments provide the researchers with a convenient 

test ground to go through the process of “trial and error” and further optimize and validate the 

outcome of their experiments before proceeding to the real experimental settings in the 

molecular biology laboratory. In the following, we demonstrate how literature-based 

information is directly used in in silico modeling and simulation experiments. 

 
 
3.1 In silico Network-based modeling of complex diseases 
Many human diseases (over 1500) have been found to result from a defect in the function of 

a single gene; for example sickle-cell anaemia is a blood disorder which is characterized by 

abnormal sickle shape of red blood cells because of a mutation in the haemoglobin gene. 

Such so-called “Mendelian” diseases occur rarely and their transmission follows a 

characteristic pattern (e.g. dominant, recessive, sex-linked). However, there are many other 
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diseases that are more “common” in the human population and their inheritance follows a 

familial pattern; such diseases are often referred to as “complex diseases” because they are 

not the result of simple Mendelian inheritance (Botstein and Risch, 2003); instead they are 

likely to arise from mutations in more than one gene or different mutations in the same gene 

(Goh et al., 2007). Usually an unknown number of multiple defected genes are involved, 

which are also interacting with environmental factors and lead to the manifestation of such 

diseases as coronary heart disease, hypertension, diabetes, obesity, various cancers, and 

neurodegenerative diseases (Motulsky, 2006). 

The polygenic nature of complex diseases (contribution of many mutated genes with low 

effect) has a great impact on the underlying cellular network at different molecular levels from 

gene expression to proteomic and metabolic levels. In other words, for us to be able to 

understand the biological mechanism(s) underlying complex diseases, it is necessary to 

consider the contribution of all possible defected genes and their products in a network of 

dependencies. Nowadays, high-throughput technologies have made it possible to look at the 

disease state from a global or system view and have produced a large amount of data at 

each molecular level. For instance, genome chip and microarray technology now allows us to 

study the activity of large numbers of genes simultaneously and to create a global picture of 

cellular function under different conditions (disease vs. healthy samples).  

Integration of all such data into comprehensible models using computational tools allows us 

to understand the biological complexity behind complex diseases by simulating the behaviour 

of cells under disease conditions in a virtual environment. In silico modeling provides a 

suitable framework for the integration of high-dimensional data across different biological 

domains which can be used for hypothesis generation and prediction; for example, in a 

cellular interaction network proper intervention points can be hypothesized as drug target 

candidates and modulating these points in silico may predict the clinical readout at the 

phenotypic level (Butcher et al., 2004). Recent application of network theory to the biological 

field has laid down the foundation of a model framework known as “integrative functional 

informatics” or “integrative bioinformatics” (Figure 2). 
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Figure 2. A systems biology view at the pathogenesis mechanisms in cancer. The aim of 
integrative bioinformatics is to aggregate the biological data at different levels and derive a 
model that is an indicator of underlying cellular interactions under disease state. 
 

Network-based models have been successfully constructed and employed to tackle the 

complexity of common diseases from different angles, including identification of disease-

modifying proteins in ataxia (Lim et al., 2006), finding novel drug targets for prostate 

adenocarcinoma (Ergun et al., 2007), analysis of allergic response in asthma (Lu et al., 

2007), and network-based classification of breast cancer metastasis (Chuang et al., 2007). 

Such networks represent the reduced form of complex interactions among cellular 

components so that each node stands for a molecular component and two nodes are 

connected with a link if they interact. The nodes and links together form an interaction 

network, which is translated into the mathematical language of graphs (Barabasi and Oltvai, 

2004). Networks serve as models for the integration of cellular information as well as the 

generation of a predictive hypothesis about the behavior of a biological system; for example, 

if changes in gene activity can be mapped to changes of corresponding secreted proteins in 

the blood, perhaps diagnosis of the disease could be easily done by testing the amount of 

such proteins in the blood (Hood et al., 2004). 

Evidence extraction from literature is often the preliminary step in formulating a network 

hypothesis for disease modeling. For instance, Pujana et al. (2007) first constructed a 
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literature-based network of human Protein-Protein Interaction (PPI) using four reference 

genes and then projected gene co-expression profiles onto this network; they enriched the 

resultant networks with additional information from human and other model organisms and 

successfully identified and experimentally validated a new component of this susceptibility 

network. 

Each individual has a unique genetic makeup and this uniqueness accounts for the 

phenotypic variations observed among individuals in the human population (Kruglyak and 

Nickerson, 2001). These variations in genetic composition (also called “genetic 

polymorphisms”) may have a great impact on disease susceptibility. Such polymorphisms 

constitute the genetic component of complex human diseases but they are thought to trigger 

the process of pathogenesis under the influence of environmental factors. To find out which 

genetic variants increase disease risk, all the variations across the human genome are 

genotyped and those variants which are quantitatively recognized as risk factors are 

determined. Identification of susceptibility genes is a progressing field of research, as it is 

expected that many susceptibility variants will be discovered in the future (Iles, 2008). 

In an attempt to identify the most important susceptibility players in breast cancer and to 

explore their relationships with other known susceptibility mutations in humans, our group at 

Fraunhofer SCAI used a network-based approach to test the hypothesis that single-point 

errors in the genetic code of multiple proteins lead to an increased level of susceptibility to 

breast cancer and that the degree of susceptibility depends on the position and function of 

each protein in the entangled network of cellular interactions. For this purpose, a human PPI 

network, relevant to breast cancer, was constructed and the susceptibility dataset drawn 

from 1140 patients with breast cancer (Hunter et al., 2007) was mapped onto this network. 

This network was topologically characterized and also compared to the randomized version. 

Topological and functional analyses of this network identified 13 significant genes which 

might play a central role in conferring susceptibility to the development of breast tumors. In 

parallel, we employed SCAIview – a knowledge discovery tool developed at Fraunhofer SCAI 

(Friedrich et al., 2008) - to reconstruct a literature-based network of gene co-citations 

relevant to breast cancer. To explore novel susceptibility associations between our 13 genes 

and other known ones, we overlaid the co-citation network on the PPI network and found 

overall 23 novel associations from which 7 associations could be directly or indirectly 

validated by the literature. Our findings are consistent with the fact that many susceptibility 

genes have not yet been discovered due to the low heritability of complex traits as well as 

the underpowered statistical methods used in linkage analyses (Hirschhorn and Daly, 2005). 

This example shows that the information embedded in free text can be used for more 

sophisticated purposes than simply extraction of biological entities. Enrichment of molecular 
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network analyses with text-mining data not only increases the added value of the analysis, 

but also strengthens the validity and interpretability of the results. 

 
3.2 In silico experimental environment for high-throughput screening 
With the advent of high-throughput technologies, researchers are now confronted with 

massive amounts of biological data, which have to be analyzed and interpreted with the help 

of bioinformatics applications. By integrating different biological datasets, life scientists are 

able to study the biological system as a whole and thus systems biology approaches are 

becoming more popular in the course of routine research activities. However, pattern 

detection, modeling and simulation of the biological system, and hypothesis testing are 

prerequisite steps in the cycle of systems biology approaches (Figure 3). This strategy has 

already been adopted by the pharma industry and academia for drug discovery purposes. 

One limiting factor in adopting this strategy is the demand for high-performance 

computational capacities. Hence, the concept of the “virtual laboratory” has been introduced, 

in which computational distributed resources are used as an electronic workspace for drug 

target identification, selection, and validation (Rauwerda et al., 2006). Grid technology 

provides a computational backbone for this purpose (Konagaya, 2006).  

 

 
Figure 3. The cycle of systems biology approaches to disease modeling and prediction. 
 
 
High-throughput virtual screening by molecular docking is an example of an in silico 

experiment which replaces the high-cost procedure of real HTS (High-Throughput Screening) 

in experimental laboratories and makes it possible to perform screening of millions of 

compounds on interesting target proteins in a reliable, rapid, and cost-effective manner (Jacq 
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et al., 2006). This approach has been successfully applied to searching for hit and lead 

compounds in the World-wide In Silico Docking On Malaria (WISDOM) project (Jacq et al., 

2008).  

The WISDOM project encompasses a collaborative framework, which has been established 

between bioinformaticians, biochemists, pharmaceutical chemists, biologists and grid 

computing experts in order to produce and make selected lists of potential inhibitors 

available. WISDOM-I, the first large scale deployment of the molecular docking application 

on EGEE (Enabling Grids for E-sciencE) [i], which took place from August 2005 to 

September 2005, has seen 42 million dockings, which is equivalent to 80 years of CPU time. 

Virtual screening of 500,000 chemical compounds was performed using FlexX software 

against different plasmepsins (aspartic protease implicated in haemoglobin degradation). On 

the biological front, three scaffolds were identified, one of which is the guanidino scaffold, 

which is likely to be novel as they have not been reported as plasmepsin inhibitors before. 

Experimental results proved that the compounds selected from WISDOM-I function as sub-

micromolar inhibitors against plasmepsin (Kasam et al., 2007; Jacq et al., 2008). The 

complete workflow employed in the WISDOM project is shown in Figure 4. 
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Figure 4. Description of the in silico experimentation workflow deployed in the WISDOM 
project for large scale screening of compounds against Malaria.  
 
With the success achieved by the WISDOM-I project on both the computational and 

biological sides, several scientific groups around the world proposed targets implicated in 

malaria, which led to the second assault on malaria, WISDOM-II (Kasam et al., 2007). 

The target portfolio was broadened, and the ZINC database (4.3 million chemical 

compounds) was screened against four different targets implicated in malaria. Over the 

course of 90 days during the winter of 2006, 140 million dockings were recorded, which is 

equivalent to 413 years of CPU time, representing an average throughput of almost 80,000 

dockings per hour. This was made possible by the availability of thousands of CPUs through 

different infrastructures worldwide. Experimental testing of the compounds finally selected 

against all the targets is ongoing. 
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4. Linking disease modeling to grid-based target identification 

Normally a research process starts with an exploration of a scientific domain by collecting 

relevant data, information, and previous knowledge, which are often hidden in scientific 

publications. Accordingly, referring to the scientific literature is usually the first step towards 

selection of drug targets and validation processes (Whittaker, 2004) because it provides a 

valid and proper framework for drug target identification purposes. When merged with 

network-based disease models, the information extracted from the text enhances confidence 

about the drugability of the candidate target. Moreover, it would be possible to generate 

informative profiles for each candidate target using information extracted from the text; i.e. 

literature-based annotation of target nodes on the network model of disease provides 

enormous insight about drug candidate efficacy and toxicity. Such profiles will be of high 

value for ranking or prioritizing target candidates. Another potential application field for this 

strategy is the emerging phenomenon of Polypharmacology in which the drugability of a 

specific ligand against multiple targets (rather than a single target) is assessed for treatment 

of polygenic complex diseases (Hopkins, 2008).  

To this end, we have devised a knowledge-based workflow for target candidate identification, 

which incorporates the information extracted from the text directly into the network-based 

disease model (Figure 5). In this workflow, information retrieval is performed on PubMed 

abstracts using the user’s search query in a context-sensitive manner. Information extraction 

is accomplished on a relevant subcorpus by a rule-based system that employs a machine-

learning technique and resolves the ambiguity problem by using regularly updated organism-

specific dictionaries (Hanisch et al., 2005). The system returns the results according to 

statistical ranking of entities found, based on Kullback-Leibler divergence (relative entropy), 

meaning that the more relevant entities (e.g. gene names) appear in the top of the ranking 

list. This system is able to extract co-mentioned biological entities (e.g. gene-gene, protein-

protein) and export them as a co-occurrence network together with the corresponding 

frequencies of co-mentions in the literature. These frequencies can be later used as the 

weight of edges in the co-occurrence network for filtering purposes. This co-occurrence 

network passes through the next module which compiles a protein-protein interaction (PPI) 

network from manually curated databases such as DIP (Datase of Interacting Proteins), 

BIND (Biomolecular Interaction Network Database), HPRD (Human Protein Reference 

Database), etc. Since the PPI network is constructed using expert-curated protein interaction 

data from databases, it provides a well-defined backbone for mapping the co-occurrence 

network and exploring potential novel associations suggested by the text mining approach. 

The output of the workflow is a network model which consists of both curated and text-based 

information and can be further enriched by different types of biological data adopted from 

molecular databases (e.g. gene expression values) or from the text itself (e.g. pathological or 
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clinical context). This network model is then subjected to statistical analysis to identify the 

key biological elements correlated with the pathogenesis mechanism. 

 

 

Figure 5. A knowledge-based workflow for target candidate identification. The information 
from the text is incorporated in the form of co-occurrences and annotations which are directly 
extracted by  the SCAIView knowledge discovery tool. 
 
 
The advantage of the text-mining data over expert curated data is that text-mining data are 

extracted from up-to-date information in the literature, thus increasing the chances of 

uncovering novel associations.  Whereas manually (expert) curated data represent well-

established knowledge (which is often represented in cartoon-like schemata), text-mining 

derived knowledge seems to be more suited to fostering the generation of novel hypotheses. 

The results from the above workflow are hypothetical suggestions and need to be tested in 

an in silico environment using simulation techniques; by this means, it can be ensured that 

the most promising target candidate will be selected to pass through the next expensive 

steps of the drug discovery pipeline. Automatic ligand-target dockings on high-performance 

grid computing infrastructures can help us effectively for this purpose: a library of numerous 

drug-like molecules is docked against candidate targets and consequently docking properties 

for all ligand-target combinations can be computed on a grid-enabled high-performance 

architecture in a very time- and computational-efficient manner. The most promising 

combinations are then selected and directed towards the next steps of the drug discovery 

pipeline (Figure 6). 
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Figure 6. Proposed in silico experimentation framework for the enhancement of efficiency 
and productivity in the early steps of the drug discovery workflow. 
 
In conclusion, the embedding of text and data mining methodologies in the architecture of in 

silico experimentation environments not only complements the experimental data but also 

enhances the predictive power of the resultant semantic model for the disease in question. 

Currently, drug development and productivity is facing a high rate of failure (as much as 

30%) due to a lack of efficacy and clinical safety (Kola and Landis, 2004). Integration of 

literature evidence into in silico disease models at the very beginning of the drug discovery 

pipeline, as well as providing a high-performance simulation infrastructure for in silico testing 

of drug target candidates, generated from the hypothetical results of in silico disease models, 

will be of high value for overcoming such attritions.  

 
 

5. Looking to the future 

Direct extraction of biological information from text will certainly ease the curation process for 

databases, which is a challenging task for database annotators and domain experts. But it 

can be foreseen that in the not so distant future, textual data will be an indispensable part of 

“integrative biology” models, which aim at predicting biological outcomes by putting different 

components together.  

The information encoded in the body of scientific literature has more to offer than can be 

found by traditional reading of publications one by one. The ability to look at hundreds of 

thousands of publications simultaneously and to do statistical analysis on factual statements 

in scientific text opens new perspectives for scientific work in the life sciences. For example, 
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another type of data that is of enormous potential in biomarker and target discovery 

corresponds to clinical outcome information, which reflects the physiological response to a 

drug or the diagnostic/prognostic value of specific biomarkers. So far such information in the 

text has been underutilized, although they offer complex descriptions of disease genotype 

and phenotype. Hence, there is a need to develop specialized terminologies for the 

extraction of clinical and biomarker information from the literature. Moreover, we expect that 

textual data embedded in the biomedical literature will play an important role in evidence-

based approaches in medicine, such as empowering clinical decision-support systems by 

means of automated screening of scientific text for statements encoding medical evidence. 

 

Notes 

[i] http://www.eu-egee.org/ 
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