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Abstract
Gaussian processes can be utilized in the area of
equation discovery to identify differential equations
describing the physical processes present in time se-
ries data. Furthermore, automatically constructed
models can be split into components that facili-
tate comparisons between time series on a structural
level. We consider the potential combination of these
two methods and describe how they could be used to
detect shared physical properties in multiple record-
ings of dynamical systems as time series. This ap-
proach provides insights into the underlying dynam-
ics of the observed systems, facilitating a deeper un-
derstanding of complex processes.
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1. Gaussian Processes (GPs)

Formally, a GP g(x) = GP(µ(x), k(x, x′)) defines a
probability distribution over the space of functions
Rd → R`, such that the outputs g(xi) at any set
of inputs xi ∈ Rd are jointly Gaussian [1]. Such a
(multi-input multi-output) GP is defined by its mean
function (often set to zero for the prior)

µ : Rd → R` : x 7→ E(g(x))

and its (multi-input multi-output) positive semi-
definite covariance function (also called kernel)

k : Rd × Rd → R`
�0 :

(x, x′) 7→ E((g(x)− µ(x))(g(x′)− µ(x′))T ).
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where (X, y) with X ∈ Rn×d and y ∈ Rn×` are
a dataset with n observations. The kernel defines
the general form of the GP and usually contains ad-
ditional hyperparameters, like a lengthscale or the
length of a periodic pattern [2]. These hyperparame-
ters directly impact the calculation of the covariance
matrix K of observation locations X.

2. CATGP

A GP’s kernel encodes prior assumptions about the
data, like smoothness or periodicity. The choice of
kernel greatly impacts the model’s performance, as a
strong correlation between these prior assumptions
and the actual data allows the model to generate
more accurate predictions and fit the data with more
precision. Conversely, automatic kernel searches can
find a descriptive kernel for a given dataset by evalu-
ating the model performance of different kernels [2, 3].
For complex structures in the data, the best kernel
is often a sum or product of simple kernels. In such
cases, sums can be interpreted as modelling indepen-
dent subprocesses which make up the dataset.

Recently, the Component Analysis in Time Series
with Gaussian Processes (CATGP) has emerged as a
way to use this principle for further analysis of GP
models [4]. This algorithm finds commonly appear-
ing kernel components (subkernels) in a collection of
GPs by interpreting kernels as sets of such compo-
nents and applying frequent itemset mining. In the
previous publications about this method, the Apriori
algorithm [5] was used as a basis, but the same prin-
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ciple can be applied to any frequent itemset mining
algorithm.

In this work we outline a potential combination of
this method with kernels with inductive bias on sys-
tems of differential equations to infer knowledge from
data with potential dynamical systems behaviour.

3. LODE-GPs

Consider a system of linear homogenous ordinary dif-
ferential equations with constant coefficients

A · f(t) = 0 (1)

with operator matrix A ∈ R[∂t]
m×n determining the

relationship between the smooth functions fi(t) ∈
C∞(R,R) of f(t) =

(
f1(t) . . . fn(t)

)T
. For such

systems the main result of [6] holds:

Theorem 1 (LODE-GPs) For every system as in
Equation (1) there exists a GP g, such that the set
of realizations of g is dense in the set of solutions of
A · f(t) = 0.

As the authors of [6] demonstrate, these LODE-
GPs can be constructed algorithmically and are guar-
anteed to satisfy the original system of linear ho-
mogenous system of ordinary differential equations
with constant coefficients given by A · f(t) = 0. This,
combined with the previously described kernel search
approach, enables users to find a fitting system of dif-
ferential equations for a given dataset.

4. Proposed Method

We propose a combination of these two methods. The
resulting process is depicted in Figure 1. While the
system in the real world can not be directly exam-
ined to identify process components, it’s reasonable
to assume that these components correspond to time
series components in a suitable decomposition. We
achieve this decomposition by employing GP mod-
els, which adapt to structures present in the data [2],
categorizing subkernels by the ordinary differential
equation that they are based on, and create analyz-
able sets of kernels representing present structures in
each dataset.

The intent of our method falls under the class of
equation discovery methods, which try to discover a
fitting dynamic system description for a given dataset
[7–9]. Where other works make use of learning this
behaviour through direct GP regression for a whole

Figure 1: The correlation between different aspects
in our proposed method. The red connec-
tions symbolize our contribution. Over-
all, process components correspond to time
series components in the recorded data,
which in turn correspond to kernel compo-
nents of descriptive GP kernels. The figure
is based on a figure in [4].

dataset, we propose to find the most frequently occur-
ring differential equations as follows.

The intended objects of analysis for this method
are systems, that accumulate multiple subprocesses,
that follow physical equations, where the exact corre-
lation between these subprocesses is unknown to the
user. To generate insights into such physical systems,
we first select descriptive LODE-GPs for time series
recordings of those systems. The selected kernels are
additive combinations of kernels, that correspond to
systems of ordinary differential equations. Thus, each
kernel can be equated to a set of kernel components,
which can in turn be analysed via CATGP. This anal-
ysis identifies the most frequent types of differential
equations that appear as subprocesses in the data.
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