Proceedings of the DataNinja sAIOnARA 2024 Conference 50-52

DOI: 10.11576/dataninja-1169

Nonlinear Prediction in a Smart Shoe Insole

Markus Vieth
Bielefeld University, Germany

Abstract

In our previous work [1], we have investigated dif-
ferent methods to compute the ideal placement of
pressure sensors in a smart shoe insole. There, we
used a linear model to predict the weight put on the
foot/leg. In this work, we investigate how using a
quadratic model instead changes the sensor place-
ment and improves prediction performance.
Keywords: Intelligent wearables, model indi-
vidualization

1. Introduction

Wearable sensors that aid in diagnosis and post-
surgery care are becoming more common. One exam-
ple is a shoe insole equipped with several pressure sen-
sors that can compute the weight put on the foot/leg
(e.g. while walking) and warn if it is overstrained.
In [1] we have investigated different methods for com-
puting an optimal positioning of the pressure sensors,
assuming a customized, linear postprocessing of the
sensor readings. In this work, we further investigate
how nonlinear postprocessing changes the results. In
contrast to a linear model, a nonlinear model allows
interactions between sensors. We especially focus on
whether the nonlinear model results in different sen-
sor positions, whether the predictions are more accu-
rate, and how the sensors contribute to the prediction
over the course of a stance phase.

2. Experiments

In this work we test the global optimization meth-
ods differential evolution [2] and simulated anneal-
ing [3] as methods for computing the optimal sensor
positioning, since these two methods performed best
in [1]. We keep the objective with customized, linear
postprocessing:
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where s refers to the selected sensor placement, the
inner part of the objective constitutes an individual
linear least-squares problem mapping sensor values
Xs,p of person p at positions s to the individual
target, and the outer part minimizes the residuals,
summed over all persons, by adapting the sensor po-
sitions s. We now introduce a second objective by
replacing the linear model with a nonlinear model f
with learnable, per-person parameters wp:
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Since we assume that the processing happens on
hardware with low computational power, we choose
f to be a quadratic polynomial, as it is fast to com-
pute. In contrast to [1], we neither use a constant
bias for the linear nor for the quadratic model be-
cause it seems counterintuitive that the model would
give a nonzero prediction with zero pressure sensor
readings. The data and other setup is the same as
in [1], including the crossvalidation scheme.

3. Results

Figure 1 and 2 show where sensors are placed often.
For three sensors (Fig. 1), there are only small dif-
ferences, namely that with the quadratic model, the
sensor cluster on the outer side of the foot is moved
up, to the area with higher pressure. For five sensors
(Fig. 2), we see that none are placed under the arch
of the foot when a quadratic model is used.

Figures 3 exemplifies how the different sensors
contribute to the prediction during one step/stance
phase. Note that for the quadratic model, some sec-
ond order components contribute negatively to the
prediction. Overall, the prediction of the quadratic
model seems to be better.

Median test scores are shown in table 1. It is visible
that the quadratic model leads to higher scores com-
pared to the linear model, such that the quadratic
model can achieve similar scores as the linear model
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Figure 1: Three sensors, differential evolution.
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Figure 2: Five sensors, simulated annealing.

with two to three fewer sensors. However for eight
sensors, the quadratic model gives no advantage over
the linear model.

4. Conclusion

Using a quadratic model for the prediction seems
promising, especially when looking at the test scores.

Figure 3: Contributions
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of sensors during one
step/stance phase. Solid black line:
ground truth, dashed line: prediction.

Table 1: Median R? test scores. n is the number of

51

SEensors.

diff. evolution simulated annealing

n linear quadratic linear quadratic

3 0.933 0.966 0.934  0.966

5 0.966 0.985 0.969 0.984

8 0.987 0.986 0.987  0.986
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