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Abstract

Incorporating constraints expressed as logical formu-
las and based on foundational prior knowledge into
deep learning models can provide formal guarantees
for the fulfillment of critical model properties, im-
prove model performance, and ensure that relevant
structures can be inferred from less data. We pro-
pose to thoroughly explore such logical constraints
over input-output relations in the context of deep
learning-based anomaly detection, specifically by ex-
tending the capabilities of the MultiplexNet frame-
work.
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Deep neural networks have established themselves
as the state-of-the-art in numerous applications, ex-
celling in areas such as image recognition [1] and var-
ious natural language processing tasks [2], often even
surpassing human expert performance. Motivated by
their impressive success, (deep) neural networks have
also been increasingly used for anomaly detection in
recent years [3]. Anomaly detection describes the
task of identifying patterns in data that diverge sig-
nificantly from the expected behavior [4] and plays
an important role in many application domains like
cyber security, medicine, and autonomous (chemical)
plants, to name but a few [5].
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Unsupervised approaches to anomaly detection
rely on unlabeled data, presumed to consist of nor-
mal samples with at most minor contamination by
anomalies. Based on this, the objective of the neural
network is to derive an inherent structure of normal-
ity - essentially defining what is expected behavior
for unseen data. While this setting is widely used, re-
cent work demonstrate that incorporating even small
amounts of prior knowledge can significantly enhance
anomaly detection performance [6, 7]. In the semi-
supervised setting, this is achieved by providing just
a few labeled samples to guide the model. However,
this does not reliably solve a more general problem
introduced by the use of deep neural networks.

Despite their overall outstanding performance,
deep learning-based solutions are often brittle and
prone to errors [8]. Even minor modifications to
an input, such as noise or adversarial perturbations,
can lead to significant behavioral changes and, con-
sequently, alter the output of a neural network. This
lack of so-called adversarial robustness [9] can be a
severe problem when neural networks are employed
in safety-critical applications where erroneous assess-
ments could lead to substantial financial losses, envi-
ronmental damage or even harm a human life. There-
fore, it is essential to ensure that these models work
safely and reliable before deploying them.

In recent years, a portfolio of formal verification
methods has emerged to provide guarantees on the
decision making of neural networks [10–12]. Given a
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neural network and a (safety-critical) property, they
mathematically prove or disprove that the network
fulfills the desired property. However, these veri-
fication techniques usually require a network to al-
ready be trained and provide no mechanism for fix-
ing or learning models. Tailored toward counteract-
ing the lack of adversarial robustness, a wide va-
riety of techniques for training more robust mod-
els have been proposed. Most of these techniques
rely on either enhancing the training data by inject-
ing specific data augmentations [13] or on adding
verification-inspired regularization terms to the loss
function [14]. As these approaches can only provide
empirical guarantees, more sophisticated techniques
integrate logical constraints into the architecture of
neural networks [15]. Ensuring the compliance of
these constraints provides provable guarantees on the
behaviour of the networks. While most of this re-
search focuses on feed-forward networks trained in a
supervised learning setting, there is a lack of methods
for neural networks used in anomaly detection.

We aim to overcome this gap by directly integrating
logical constraints as a means to encode prior knowl-
edge into deep learning-based anomaly detection. In
addition to provably guarantee compliance with pre-
defined model decision-making requirements [16], log-
ical constraints can enhance performance [17] and re-
duce the dependency on large amounts of (labelled)
data [14], both of which naturally benefit the inher-
ent complexity of anomaly detection on complex real
world data.

MultiplexNet [16] is a method that implements log-
ical constraints on model outputs, encoding them
as quantifier-free linear arithmetic formulas in dis-
junctive normal form (DNF). Provided that the out-
put domain adheres to previously known restrictions,
these constraints are provably guaranteed. The aug-
mented output layer of the neural network applies a
separate transformation for each term in the DNF
ensuring their respective satisfaction, thereby pro-
ducing equally many constrained outputs. Conse-
quently, each constrained output satisfies the over-
arching DNF. Similar to the functionality of a multi-
plexor in logical circuits, a latent categorical variable
is optimized to select the transformation for a given
input.

For a proof-of-concept, we will first apply an
adapted version of MultiplexNet to a simplified vari-
ant of a complex, real-world tabular dataset to con-
duct anomaly detection. This dataset comprises sur-
vey results in which participants were asked to accept

or reject recommendations for the approval of bene-
fit subsidies to unemployed job-seekers. These job-
seeker profiles were synthetically generated for the
survey and characterized by a combination of various
features like work experience, communication skills
or county of origin, while the recommended decisions
were biased with respect to a subset of these features.
The objective of the anomaly detection task is to
identify anomalies in the sense of unexpected partic-
ipant reactions to specific model decisions presented
to them.

In general, the MultiplexNet architecture supports
encoding any property which can be specified in the
first-order fragment of quantifier-free linear real arith-
metic as logical constraints over the model outputs.
We propose to extend this architecture to input-
output relationships, which may define some basic
patterns of (a)normal behavior as a way of provably
robust incorporation of prior knowledge directly into
the learning process. During our preliminary experi-
mental setup we will start by providing a set of log-
ical constraints which function as a sanity check for
the anomaly detector and guide it towards expect-
ing some principles of rationality. For instance, we
include a constraint which enforces that our model
expects a high acceptance rate whenever a good job-
seeker candidate (i.e. someone with a high average
score on positive features like communication skills)
has been recommend to be granted a benefit.

As further course of our research, we aim to eval-
uate this approach with an extended variant of the
aforementioned survey dataset as well as chemical
process data, employing more sophisticated logical
constraint setups in the process. Additionally, we
plan to explore alternative methods for incorporating
logical constraints into deep learning-based anomaly
detection that still guarantee to uphold predefined
model properties based on expert knowledge.
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