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Abstract

In recent years, deep neural networks have shown
excellent performance, outperforming even human
experts in various tasks. However, their inherent
complexity and black-box nature often make it hard,
if not impossible, to understand the decisions made
by these models, hindering their practical applica-
tion in high-stakes scenarios. We propose a frame-
work for learning LTL formulas as inherently inter-
pretable machine learning models. These models can
be trained both in a supervised and unsupervised
setting. Furthermore, they can easily be extended to
handle noisy data and to incorporate expert knowl-
edge.
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In the last years, Artificial Intelligence (AI) has re-
ceived tremendous attention and is nowadays used
in a wide variety of application domains including
medicine, law enforcement, autonomous systems, and
natural language processing, to name but a few. In
most cases, these Al systems are based on deep neu-
ral networks with hundreds of layers and billions of
parameters. Trained on large amounts of training
data, these models have shown excellent performance,
outperforming even human experts in various tasks.
However, their inherent complexity and black-box na-
ture often make it hard, if not impossible, to under-
stand the decisions made by a neural network. This
is especially problematic in high-stakes application
and often a severe obstacle to employing Al systems
in practice. Consider, for instance, a medical system
assisting doctors with diagnosing patients. If the sys-
tem diagnoses a specific disease, it is imperative to
understand the reason to ensure correct treatment is
prescribed.

To overcome this drawback of intransparent
decision-making, the field of explainable artificial in-
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telligence (XAI) has evolved in recent years. Instead
of just computing the decision of a neural network,
XAI methods also provide a human-readable expla-
nation of how the network concluded this decision
(see [1] for a more detailed introduction). Broadly
speaking, these methods can be separated into post
hoc explanations and inherently interpretable mod-
els. Post hoc explanations do not interfere with the
architecture or training of a neural network but aim
at inferring an explanation by analyzing its decision-
making post hoc. State-of-the-art methods include
using game-theoretic Shapley values as a measure
for feature importance (SHAP [2]), the use of surro-
gate models for local explanations (LIME [3]), and
the visualization of feature importance using heat
maps (Grad-CAM [4]), to name but a few. In-
stead of training a complex neural network, the sec-
ond paradigm opts for training simpler models such
as decision trees, decision rules, or linear regres-
sion. Even though these models are inherently inter-
pretable, they may lack the ability to generalize well
from the training data leading to worse overall perfor-
mance. Nevertheless, multiple papers have recently
introduced deterministic finite automata (DFAs) as
capable (i.e., on par with state-of-the-art LSTM mod-
els) yet interpretable models for sequence classifica-
tion [5, 6] and anomaly detection [7].

In this paper, we follow the second paradigm and
introduce a framework for learning formulas in Linear
Temporal Logic (LTL) [8] as interpretable machine
learning models for time series data. This specific
choice of model is motivated by the following obser-
vations: first, a description of the observed, temporal
behavior can often be captured in a concise logical
formula; second, there is a straightforward way to
translate an LTL formula to natural language, mak-
ing it easy for experts and lay people to comprehend;
and third, many engineers are familiar with Linear
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Temporal Logic, being the de facto standard for spec-
ifying temporal properties. We consider two different
learning setups, one supervised and one unsupervised
learning scenario. Furthermore, we will discuss pos-
sible extensions to handle noisy data and to insert
domain and expert knowledge.

In the first, supervised setup, we are given a finite
set S of sequences together with their corresponding
class labels. Then the task is to learn an LTL-based
classifier that predicts the class label of yet unseen
data. Toward this goal, we construct a set of min-
imal LTL formulas, each characterizing one of the
possible output classes (thus functioning as a one-vs-
rest classifier). Here, minimality refers to a minimal
number of subformulas which we use to ensure high
interpretability in the sense of Occam’s razor (i.e.,
smaller formulas are generally easier to understand
than larger ones [6, 9]). For each class, we construct
the corresponding formula by splitting the set S in
a one-vs-rest manner. Then, we use the algorithm
proposed by Neider and Gavran [10] to infer an LTL
formula from this data. In order to classify a se-
quence, we query each LTL formula in our set, giving
us a distribution over the decisions of the one-vs-rest
classifiers. Then we adopt the approximate Bayesian
method of Shvo et al. [6] to infer a posterior probabil-
ity distribution over the true class label and conclude
a prediction.

For the second setup, we consider the task of
anomaly detection, i.e. identifying patterns in data
that do not conform to expected behavior [11]. As
anomaly detection often plays a major role in safety-
critical applications such as medical diagnosis or au-
tonomous control, collecting anomalous data can of-
ten be dangerous and labeled data is scarce. There-
fore, anomaly detection methods are often trained
in an unsupervised setting where the labels of the
data are a priori not known but assumed to be nor-
mal. The objective of the anomaly detection method
is then to learn the underlying concept of normality
in the data. Whenever unseen data diverges from
this concept of normality, it will be considered an
anomaly. In addition to the data, these anomaly de-
tection methods usually also require further auxiliary
information or fine-tuned hyper-parameters to pre-
vent them from producing a degenerate solution (i.e.,
one that classifies all or no data as anomalies). When
adopting the above concept of anomaly detection in
our second, unsupervised learning scenario we rely
on the approach proposed by Roy et al. [12]. Given
a set S of unlabeled sequences and a size bound n,
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their algorithm produces an LTL formula of size n
which is language minimal with respect to S, i.e., it
accepts all sequences in S and no formula of the same
size accepts fewer sequences (outside of S). Here, the
size n functions as an additional parameter regulating
the trade-off between interpretability and capability
to generalize. We can use an LTL formula learned by
this algorithm to capture normality in the given data
and thus to detect anomalies.

In both setups, the proposed algorithms incorpo-
rate the learning task as a constraint-solving problem.
This allows them to utilize the advances and years
of engineering work of modern SAT-solver. Further-
more, it provides a rich framework for further opti-
mization and extension of the learning algorithm.

Similar to neural networks, both learning frame-
works are susceptible to noisy data. While in the
second setup, this may cause drastically worse per-
formance, it can even render the learning task un-
solvable in the first setup (if two inputs are the same
but have different labels). One way of mitigating the
effect of noise could be the incorporation of the ideas
of Gaglione et al. [13] who propose a framework for
learning LTL formulas from noisy data.

A second benefit of the learning framework is that
it allows for easy incorporation of domain or expert
knowledge. Lutz et al. [14] proposed a framework
where expert knowledge in the form of a so-called
sketch (i.e., a partial LTL formula) can be provided
to the learning process. The learning algorithm then
completes the sketch based on the given data. Com-
bining this framework with the proposed learning
frameworks allows utilizing expert knowledge to im-
prove the quality of the learned LTL formulas and
also speed up the learning process.

In conclusion, we introduced a framework for learn-
ing LTL formulas as inherently interpretable machine
learning models both in a supervised and unsuper-
vised setting. Furthermore, we presented two exten-
sions of the learning framework, allowing the miti-
gation of noisy data and the incorporation of expert
knowledge.
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