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Abstract. Developing a system which generates a 3D representation of
a whole scene is a difficult task. Several new technologies of 3D time-
of-flight (ToF) imaging, which overcome various limitations of other 3D
imaging systems, such as laser/radar/sonar scanners, structured light
and stereo rigs have been developed in recent years. However, only lim-
ited work got published upon computer vision applications based on
such ToF sensors. We present in this paper a new complete system for
3D modeling from a sequence of range images acquired during an arbi-
trary flight of a 3D ToF sensor. Comprehensive preprocessing steps are
performed to improve the quality of range images. An initial estimate
of the transformation between two 3D point clouds – computed from
two consecutive range images – is achieved through feature extraction
and tracking based on three kinds of images delivered by the 3D sensor.
During the initial estimation, a RANSAC sampling algorithm is imple-
mented to filter out outlier correspondences. At last the transformation
is further optimized through registering the two 3D point clouds using
a robust variation of the Iterative Closest Point (ICP) algorithm, the
so-called Picky ICP. Extensive experimental results are provided in the
paper and show the efficiency and robustness of the proposed system.

1 Introduction

Range imaging provides a direct way for acquiring 3D information from objects
and scenes. For building a complete model of a 3D scene, one needs to acquire
images from different points of view, register them and integrate the sequence
of range images to obtain a single digital 3D surface representation of the scene.

A great deal of work has been published on 3D modeling from range images.
A best-known algorithm for registering two 3D point clouds – computed from
two consecutive range images – is the Iterative Closest Point (ICP) method [1].
A number of variations of the ICP has been proposed to improve its convergency
criterion, to deal with partially overlapping cases, to remove outliers, and to re-
duce computational costs [2] [3] [4] [5]. A good initial relative pose estimate is
required for ICP and its variations. This problem is usually solved by detect-
ing and tracking distinctive features between consecutive range images, such as
edges, lines, curves, or surface curvatures [6] [7] [8] [9]. Dorai gives an extensive
overview of already existing reconstruction systems [10]. However, most of the
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methods above deal with range images captured by specialized sensor hardware,
e.g. laser/radar/sonar range scanners, structured light or stereo rigs. Such sys-
tems have various restrictions on the environment and require high development
and computational costs. E.g. a laser scanner is not able to provide a matrix of
3D points in real time or stereo rigs need textures for computing 3D points.

The Photonic Mixer Device (PMD) technology enabling the real-time acqui-
sition of a 2D matrix of depth values has been developed in recent years [11].
The PMD sensor measures the time-of-flight (ToF) of an infrared signal that is
sent from the sensor to an object and reflected back to the sensor. The ToF is
determined by the distance between an object and the optical center of the sen-
sor. Another 3D sensor called Swiss Ranger, developed by the Swiss Center for
Electronics and Microtechnology (CSEM) [12], is based on a similar technology
as PMD. Nowadays, the frame rate of such 3D sensors is up to 30 frames per
second.

Our system is able to generate a complete 3D surface representation of a
scene using a sequence of frames acquired during an arbitrary camera flight of
such a 3D ToF sensor. Due to the low resolution and low depth accuracy, existing
3D modeling techniques cannot work directly upon such 3D ToF sensor systems.
The PMD sensor yields for each frame an intensity, an amplitude and a distance
image. The amplitude image reflects the relative accuracy of the measurement of
each pixel, and the 3D structure of the scene can be computed directly from the
distances. A minimum amplitude filter is implemented using a threshold which
is computed statistically from the image to remove noisy pixels, and a distance-
adaptive algorithm is proposed to smooth the images (Section 2). Afterwards an
initial estimate of the transformation between two 3D point clouds, computed
from two consecutive frames, is achieved by feature extraction and tracking
based on the three types of images. During the process, a RANSAC sampling
algorithm is used to filter out outlier correspondences, to get a robust initial
estimate (Section 3 – Coarse Registration). Then the transformation is further
optimized by registering the two 3D point clouds using the Picky ICP algorithm
[13](Section 3 – Fine Registration). The proposed system is tested with two 3D
sensors: PMDr19k with a resolution of 120× 160 pixels and PMDr1k-S with a
resolution of 64× 16 pixels. The efficiency and the robustness of the system are
evaluated with extensive experimental results (Section 4).

2 Preprocessing

This section describes in detail each preprocessing step as shown in Figure 1.
The PMD cameras used provide three images per frame containing distance, in-
tensity, and amplitude values. The distance value describes the distance between
the optical center of the camera and a certain world point. The corresponding
intensity value is the grayscale value of this world point and the amplitude value
accords to the amplitude of the signal measured by the PMD sensor. In the fol-
lowing the smoothing of the three output images, the rejection of pixels with bad
distance measurements and the computing of 3D coordinates will be described.

Smoothing of the Intensity, Amplitude and Distance Images The principal
sources of noise in digital images arise during image acquisition influenced by
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Fig. 1. Overview of the preprocessing steps.

environmental conditions [14]. Especially the PMD sensor, which works with
active illumination, has to deal with scattering effects overlaying the distance,
intensity, and amplitude values with noise. Gabriel showed that this noise over-
laying the distance values follows a Gaussian distribution [15]. A commonly-used
approach to suppress such distributed image noise is to apply a median filter to
the image. Smoothing of images with preserving of edges and corners for further
image processing, e.g. feature tracking, is an advantage of the median filter.

However, a 3D sensor provides also a distance value for each image pixel,
which refers to an amount of 3D area a pixel corresponds to. Obviously, the larger
the distance value, the larger is the area represented by the pixel. The physical
size of the sensor is significant especially for the PMD sensor: 0.003mm2 for
PMDr19k and 0.0016mm2 for PMDr1k-S. Some numbers for the areas covered
at different distances are given in Table 1 (left).

Therefore, a distance-adaptive median filter is proposed in this paper to
smooth the distance, amplitude, and intensity images, respectively. The me-
dian filter operates on each pixel with different sizes of filter mask according to
its distance value. Generally, pixels with larger distance value are filtered with
smaller filter masks, and vice versa, so that significant structures at large dis-
tances are not blurred, and at the same time, noise at small distances can be
removed. Table 1 (right) lists three distance ranges and the corresponding filter
mask sizes – 3× 3, 5× 5, and 7× 7 – that are used in the system proposed.

area (mm2)
dis (mm) 1k-S 19k

0 0.033 0.0016
1000 127.88 11.111
2000 511.52 44.444
3000 1150.9 100

dis (mm)
area (mm2) 1k-S 19k filter size

up to 100 884.30 3000 7× 7
up to 400 1768.6 6000 5× 5
from 400 > 1768.6 > 6000 3× 3

Table 1. (left) Size of the area projected on one PMD pixel of PMDr1k-S (1k-S) and
of PMDr19k (19k) depending on the distance (dis) between the image plane and the
area in 3D. (right) Determination of the distance threshold for the mask sizes of the
distance-adaptive median filter.

Thresholding on the Amplitude Values The distance measurement of a PMD
sensor is based on the measurement of the phase delay between the signal sent
and received. The signal detected is characterized by a phase angle equal to
the phase delay measured and by a certain amplitude value. This amplitude
characterizes the reliability of the measurement of the pixel. It gives information
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about the amount of light reflected by an object. The less light is reflected, the
less amount of light is detected and the smaller is the amplitude of the signal.

Signals from badly reflecting surfaces will be more influenced by noise, so
that the distances measured will probably be wrong. Our approach introduces a
threshold θamp. All distance measurements with amplitudes below this threshold
are removed. The threshold varies for each frame. It is a fraction of the mean
value of all amplitudes of one frame.

Edge Point Removal This preprocessing step deals with edge points, which
arise in the case when rays from the foreground and the background hit the
same pixel simultaneously. The measurement returned by the pixel will be a
distance somewhere between the foreground and the background.

The idea for filtering such points, is to consider the pixels in the 8-neighbor-
hood Nc of the current pixel χc. If there are at least two pixels χi ∈ Nc with
distances to χc smaller than a certain threshold θedge then the current pixel χc

has enough near neighbors. Otherwise, this pixel χc is a so-called edge point as
described above. Such pixels are removed from the point cloud.

3D Coordinates by Back-projection The given depth values are distances be-
tween the optical center of the camera and a world point in 3D. The 3D coordi-
nates are generated out of these distances with regard to a 3D camera coordinate
system. With the assumption of ideal perspective projection, the PMD camera
works as a pinhole camera. Hence, the 3D coordinates can be computed from the
distances measured using the mathematical idea of ray proportions in triangles.

3 Registration of Consecutive Frames

The main task of the framework presented here is to estimate the motion of
the camera made during the data acquisition only based on the distance, am-
plitude, and intensity values of the PMD camera. As a set of frames F 0, F 1,
. . . is processed sequentially, it is sufficient to estimate the rigid transformations
(Ri, ti) between all pairs of consecutive frames (F i−1, F i)i=1, ... with Ri ∈ R3×3

and ti ∈ R3. Reconstruction of a whole sequence is reduced to the problem of
estimating the optimal motion between two frames A (= F i) and B (= F i−1).

A typical sequence of PMD frames representing a scene recorded, consists of
several point clouds with overlapping regions. The basic idea of registering such
frames is to find pairs of corresponding points. The most popular algorithm to
realize the concept is the Iterative Closest Point (ICP) algorithm [1]. The algo-
rithm determines the point correspondences C = {(i, j) | ai ∈ A and bj ∈ B}
by searching for each point ai for the nearest neighbor bj concerning the Eu-
clidean distance. Therefore, the ICP can only be used to estimate small motions.
It is just applicable for fine registration. The ICP algorithm needs an initializing
transformation (R0, t0) to deal with bigger motion between two frames. This
transformation results from the so-called coarse registration of two frames.

For a given set of point correspondences C the optimal transformation (R, t)
is computed such that the mean square objective function

fmin(R, t) =
1
|C|

∑

(i,j)∈C
‖ bj −Rai − t ‖2 (1)
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Fig. 2. Details of the coarse registration in the 3D reconstruction chain.

is minimized [16]. A Singular Value Decomposition (SVD) [17] using the special
case treating by Umeyama [18] solves this optimization problem in our system.

Coarse Registration The coarse registration provides a good initial transforma-
tion (R0, t0) which will support the convergence of the ICP algorithm to a global
minimum. It is essential to find valid point correspondences, which means that
a pair of points (ai, bj) ∈ C corresponds to the same point in the real 3D world.
Figure 2 points out the four main steps of the coarse registration between two
frames A and B. The three output matrices containing intensity, distance, and
amplitude values can be interpreted as normal grayscale images. Consequently,
the coarse registration here is using methods dealing with 2D data.

The most important step is the extraction of robust and distinctive feature
points. Significant structures, e.g. edges and corners, are suitable for features
and are determined using the structure tensor operator [19]. In this way a set of
distinctive features is provided in frame A.

In the next step the new positions of these features in frame B are detected.
Movement of feature positions results from the camera motion during the data
acquisition. Optical flow algorithms are able to cope with this motion [20]. The
estimation of optical flow in image sequences is mostly based on differential
methods, which can be classified into global [21] and local methods. The local
method of Lucas and Kanade [22] is used here, which assumes that the optical
flow is constant within a certain neighborhood N .

The result of the feature extraction and tracking is a set of point correspon-
dences C. As feature tracking via optical flow is based on solving an optimization
problem that can result in wrong point correspondences, such outlier pairs have
a disturbing influence on computing the initial transformation (R0, t0) via SVD.
Therefore, a method based on the RANdom SAmple Consensus (RANSAC) algo-
rithm of Fischler and Bolles [23] is applied to reject outliers. As three non-linear
point correspondences are sufficient for computing a transformation in 3D, the
RANSAC algorithm chooses as an initial data set three point pairs randomly
from the set C and enlarges this set with consistent point pairs if possible.

Fine Registration The task of the fine registration is to optimize the initial trans-
formation (R0, t0) computed during the coarse registration. Besl and McKay [1]
developed the so-called Iterative Closest Point (ICP) algorithm to deal with this
problem. For each point ai of frame A, the corresponding point bj of frame B
is the nearest neighbor in the Euclidean sense.

As applying the nearest neighbor operation for each point of frame A in
each iteration step k of the ICP algorithm is one of the most time consuming
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Fig. 3. General overview of the processing steps during the fine registration.

operations in the system, it is necessary to accelerate this search. The aim is
to find in a fast way a small region of interest which contains a small number
of potential nearest neighbor candidates. We use here the commonly accepted
assumptions of localizing the principal point in the middle of the image plane and
of using the details on focal length and pixel dimension given by PMDTec [24].
Using these intrinsic parameters of the camera a search method based on reverse
calibration [25] is developed. There, a given point is projected on the image plane
of the camera. The resulting pixel forms the center of a region of interest (ROI)
in the image plane. The 3D points corresponding to the pixels within the ROI
are potential nearest neighbor candidates. At last, the 3D point which is nearest
to the given point is selected as the nearest neighbor.

It is obvious that a set of point correspondences generated via a nearest
neighbor search contains a lot of invalid point pairs. As the standard ICP algo-
rithm is sensitive to noise, a robust version of the ICP, the Picky ICP algorithm,
is used here [13]. It introduces methods for rejecting bad point correspondences.
First, point pairs with a distance between them greater than a certain thresh-
old θdis (= 2.5 · 1.4826 · median(i,j)∈C{‖ bj − ai ‖}) [26] are removed from the
set. Second, in the case of partially overlapping point clouds several points can
have the same nearest neighbor point. All these point pairs are rejected apart
from the pair with the smallest Euclidean distance.

Leaving out pairs causes that the convergence proof of the ICP by Besl and
McKay is no more valid. Consequently, additional break conditions are necessary
to ensure the termination of the Picky ICP algorithm. The algorithm terminates,
if there are no big changes in the adjustment error e = 1

|C|
∑

(i,j)∈C ‖ bj−ai ‖2 or
in the computed transformation between the previous and the current iteration
step or if the number of maximal iteration steps is exceeded.

Figure 3 summarizes the registration steps described. In the case when no
break condition is fulfilled, an extrapolation of rotation Rk and translation tk

as already proposed by Besl and McKay with the extensions of Rusinkiewicz [2]
and Simon [27] is applied to accelerate the convergence of the algorithm.

4 Experiments and Discussion

The experiments with the system are performed using the cameras PMDr19k
(120× 160 pixels) and PMDr1k-S (64× 16 pixels). The system runs on a Pen-
tium 4 with CPU 3.00GHz and 1.00GB RAM. A ground truth – the exact
position of the PMD camera – for comparison with the motion estimated during
the registration is determined by the tracking system as shown in Figure 4. The
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camera is labelled with the target displayed in the figured. Figures 5(a) and 5(c)
show two test scenes for reconstruction.

Fig. 4. Tracking system
which determines the posi-
tion of the camera within
a global world coordinate
system. The camera is
labelled with a target.

The accuracy of the estimated motion is deter-
mined by comparing the real motion (Rd, td) to the
estimated (Re, te) by computing a mean error ε. A
given point set P = {pi} is transformed to the sets
Pd = {pd

i = Rdpi +td} and Pe = {pe
i = Repi +te}

with

ε =
1
|P|

∑

i

‖pe
i − pd

i ‖ (2)

defining the error between the resulting point sets.
The smaller ε, the closer is the estimated motion to
the real one.

In this work several modules of the system are
tested for their performance and accuracy. First,
the module for searching the nearest neighbor is ex-
amined. The reconstruction results using the search
method which determines a region of interest (fROI)
are compared to results of the reconstruction con-
sidering all points of a point cloud when determining
the nearest neighbor (fall) for every 3D point. As can be seen in Table 2 (left) only
in few cases the error increases when using a subset of points for determining the
nearest neighbor. Mostly, the error stays nearly unchanged. Consequently, the
method proposed for the nearest neighbor search is suitable, since this method
accelerates the search by a factor of round 6 as shown in Table 2 (right).

1k-S 19k
fall fROI fall fROI

ē σ ē σ ē σ ē σ

scene 1 10 5 15 22 59 44 29 22
scene 2 25 25 26 26 39 76 85 107

CPU time (ms)
1k-S 19k

fall 15 3041
fROI 2 242

Table 2. (left) Evaluation of both methods for the nearest neighbor search – consider-
ing all points of a frame (fall) or only few points of a certain region of interest (fROI) –
on sequences of PMDr1k-S (1k-S) and PMDr19k (19k). The mean error (ē in mm)
and its standard deviation (σ in mm) are displayed. (right) Computation times of the
different methods for the nearest neighbor search.

Next, the influence of the preprocessing steps on the 3D reconstruction is
examined. The results are shown in Table 3 (left). The distance-adaptive median
filter leads to small improvements (at least 4mm) in the reconstruction results of
frames from PMDr19k compared to a normal 3×3 median filter. For PMDr1k-S
no difference between both filters can be observed as in both scenes the adaptive
filter returns the 3 × 3 median filter for each pixel. The edge point removal
has the biggest influence on the results of the small camera, since the point
set is very small and can be strongly influenced by a few bad points. For the
amplitude filtering two threshold values are tested: θamp = 1

3 δ̄ and θamp = 2
3 δ̄,

where δ̄ is the mean value of all amplitudes of the current frame. Reconstruction
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ē (mm)
1k-S 19k

fmed frm famp sc. 1 sc. 2 sc. 1 sc. 2

no no no 9 24 100 100
adapt yes 1

3
δ̄ 11 19 29 86

3× 3 yes 1
3
δ̄ 10 20 90 90

adapt yes 2
3
δ̄ 18 25 29 86

adapt no 1
3
δ̄ 19 21 30 87

ē (mm)
modalities 1k-S 19k

for fcrs fRANSAC sc. 1 sc. 2 sc. 1 sc. 2

Int, Amp, Dis yes 9 19 29 86
Int, Amp, Dis no 11 22 27 85

Int yes 12 19 45 86
Int no 13 22 46 85
no no 19 22 82 82

Table 3. (left) Influence of the different preprocessing steps – smoothing with median
filters (fmed), rejecting of bad point pairs via edge point removal (frm), and ampli-
tude filtering (famp) – on the reconstruction results of sequences of scene (sc.) 1 and 2
recorded with PMDr19k (19k) and PMDr1k-S (1k-S). (right) Influence on the recon-
struction results of the coarse registration (fcrs) used with different image modalities
and of the rejection of invalid point pairs via RANSAC (fRANSAC).

results of PMDr19k do not show any difference between both values. But for
PMDr1k-S 2

3 δ̄ produces worse results, because too many points are rejected
which are necessary for a camera with low resolution.

The last test, as shown in Table 3 (right), examine the influence of the coarse
registration on the reconstruction results using different image modalities and
point rejection via RANSAC for the registration. In most cases coarse registra-
tion performed on the three (intensity, distance, and amplitude) images together
with bad point pair rejection via RANSAC provide the best reconstruction re-
sults. Even when the coarse registration does not provide an improvement of the
results it accelerates the whole reconstruction in any case. For example, register-
ing two frames of scene 1 using the PMDr19k takes about 39s without coarse
registration and 11s using the computed initial transformation. In Figures 5(b)
and 5(d) reconstruction results of sequences of scene 1 and 2 containing 20 frames
acquired with PMDr19k are presented.

To summarize the results it can be stated that the distance-adaptive median
filter is most suitable for smoothing during preprocessing. The coarse registra-
tion using all modalities and bad point pair rejection via RANSAC improves
and accelerates the whole reconstruction process. Unfortunately, the range of
scenes this reconstruction framework can deal with is limited. Scenes with huge
homogeneous areas in distance and intensity values are difficult to register as
there are no or not enough distinctive features that can be used for coarse and
fine registration.

5 Conclusion and Outlook

In this paper a fully automatic system for 3D reconstruction of data from a 3D
ToF sensor is proposed. Since all frames of the input sequences are processed
sequentially, the entire problem of 3D reconstruction is reduced to a problem of
registering two consecutive frames. The computed optimal transformation esti-
mates the motion of the camera between the corresponding camera positions in
3D space. The system consists of preprocessing steps for the three (intensity, dis-
tance, and amplitude) images per frame, where these images are smoothed with
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(a) (b) (c) (d)

Fig. 5. Digital photos of scene 1 (a) and scene 2 (c) are shown here. Additionally,
reconstruction results of 20 frames recorded by PMDr19k of scene 1 (b) and scene 2 (d)
are presented.

a distance-adaptive median filter and invalid 3D points are rejected. A coarse
registration computes an initial motion estimate via detecting certain features
and tracking them using optical flow. As some of the point correspondences may
be illposed, a RANSAC based method is applied to reject bad point pairs. Fi-
nally, a fine registration optimizes the estimate using the Picky ICP. In future
work it will be interesting to extend the coarse registration from 2D data to fea-
tures in 3D and to test the registration on more different scenes. Additionally,
the main aim will be to realize 3D reconstruction in real-time.
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