
A flexible multi-server platform for distributed video
information processing

Yao Wang1, 2, Linmi Tao1, Qiang Liu2, Yanjun zhao1, Guangyou Xu1
1 Department of Computer Science, Tsinghua University

Beijing 100084, China
2 School of Software, Tsinghua University,

Beijing 100084, China
yao-wang04@mails.tsinghua.edu.cn linmi@tsinghua.edu.cn

Abstract. The complexities of advanced computer vision systems call for an
infrastructure which is capable of integrating various computer vision
algorithms into a working system with high flexibility. The distributed cameras
and the need for real-time applications in current systems both lead to a
distributed architecture. This paper presents a platform which acts as a
framework for video information processing and analysis applications to plug in.
The platform is composed by a set of servers which collaborate with each other
to accomplish the tasks like video capture, transmission, buffering and
synchronization. A set of inherit classes are designed for the sake of simplicity
in sharing data among applications through sockets. We also suggested an
approach to evaluate the delay of the platform. The platform is now running as
a part of our On-the-Spot archiving system, and the results show that this
platform can support up to 5 cameras system for real-time video information
processing running on dual Xeon computers. As the platform is flexible, it can
support the development of various application systems.

Keywords: multi-server, on-line video content analysis, middleware, system
integration.

1 Introduction

Intelligent computer vision systems are getting more and more complex such as the
systems presented in [2, 3]. The systems include not only distributed array of cameras
that offer wide area monitoring, but also a set of computer vision algorithms designed
for scene analysis at multiple levels of abstraction [1]. The computer vision
algorithms in such systems can be used to derive indexed metadata for the large
amount of raw video data generated by the camera networks, or to create user-aware
services [4]. Though there are many video content analysis and scene understanding
algorithms developed in laboratories, they are generally designed for some specific
applications and for operating in single machine environment. Therefore, to integrate
diversiform algorithms into a working system and deploy them into a distributed
environment are the urgent needs in the development of advanced computer vision
systems which calls for a platform to support the distributed information processing
and algorithms’ integration.

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

Some previous works have presented a few architectures or middleware for the
development and implementation of computer vision systems. For example,
Tsinghua’s SISS [5] presented a platform to help agents’ management and inter-agent
collaboration in a multi-agent system. It is designed for pervasive computing and do
not meet some of the requirements of video-based information analysis systems.
USC’s MFSM [6] is a middleware which supports efficient real-time media data
processing and user immersion. It didn’t pay enough attention to issues on the
distributed environment. NIST’s smart data flow system [7] is a middleware that
supports sensor data transmission in distributed environment, but it didn’t explore the
problems with the whole lifetime of video streams. Hereby, we present a server-based
platform to enable distributed, scalable, easy-access video information processing.
The following of this paper are organized as this, section 2 describe our basic idea of
the system architecture. Section 3 is some detail design aspects of the platform.
Section 4 is the experiments and some results, followed by section 5, the conclusion
and future work.

2 Overview of system architecture

An advanced computer vision system such as an intelligent video surveillance
system generally includes video data capture, transmission, analysis, storage and
retrieval [8]. These different parts form a pipeline of the video stream processing
which requires a common platform. However, most researches only focus on the
analysis part of the whole pipeline. In this regard, our idea is to provide a ready-for-
use framework. The framework can run in minimal configuration which is mainly a
video record system that collects cameras’ image data, compresses it and stores in
files for retrieving. For building an intelligent computer vision system, the platform
also provides an easy-use interface for high level video analysis applications to plug
in and work without much modification. We provide two access points which
correspond to on-line and off-line processing. For an on-line application, the video
frames are directly captured form cameras, and for an off-line application, the video
frames are retrieved from storage files. The applications use a query like methods to
get video frames, and to get metadata from other applications by means of callback.
All metadata is synchronized to video frames and can be used as indexes of video
streams to provide more efficient search as well as more efficient storage.

Figure 1 shows an overview of the system. The software architecture can be
divided into a server domain and an application domain. In the server domain, there
are various type of servers connected and communicate with each other. This is the
main part of the platform. In the application domain, algorithms are treated as
independent module applications and communicate with the server through sockets.
This separation of server domain and application domain brings two benefits. First, it
divides the tasks of video analysis from the other front and end tasks such as data
fetching and result record. Now the data transmission of whole system can be
managed by the platform and be transparent to the applications. Second, the server
and applications are designed as separate processes and communicated by standard
socket. This means that applications can be written in any language and the crash of

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

one application will not result in the brake down of other applications or servers. This
is important especially in prototype stage when the algorithms are not very robust and
efficient.

Fig. 1. A brief view of the platform’s architecture. The server domain is comprised of various
types of servers which act as agents to serve there local applications. There are three types of
servers. The capture servers (red) have threads which interface with the sensors (cameras) and
distribute sensor data to other servers for analysis. It also records the original data files for
retrieval. The process servers (green) buffer the sensor data and provide scalable video frames
according to the application requirements. The archive server (blue) holds a full connection
with the other servers to collects metadata form analysis applications and fetch original data
files for end users.

For a distributed system, the servers are allocated in different hosts. Each host runs
one server to provide services for applications on the same host. On the other hand,
the distributed environment is transparent to the applications. They just collaborate
with its local server as if all other resources are local. In this regard, the server acts
like an agent which serves local applications and collaborates or negotiates with other
servers. We summarize the main requirements to the servers as follow:

1. Interface with the cameras and fetch the sensor data.
2. Negotiate with each other, locate the sensor data streams, then collect them and

buffer them for applications.
3. Locate applications, route metadata for them as well as manage their local

applications’ run.
4. Compress and decompress the video data for transmission through network.
5. Manage the buffer pool, refresh it for real-time streams and fetch specified

buffer for applications.
6. Provide context information to the applications so that they can run in a context-

aware manner.
7. Provide necessary privacy enhancement for the system so as private data will not

be abused. (This requirement is not discussed in the paper)

LAN

Sensors Server Domain Application
Domain

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

3 Specifications

3.1 Multi-thread servers

As the servers have to carry out several tasks and serve multiple applications, its
structure is highly multi-threaded (as shown in figure 2). There are three main types
of threads in the servers. A sensor data collecting thread runs in a loop to receive
sensor data from data source (capture card, file, socket, etc.) and inserts it into a
buffer pool. It works in push mode and discards oldest data in pool when new data
comes. A sensor data consuming thread may be a decoding thread which decompress
the video data and put into another frame buffer pool, or a data sending thread which
sends the sensor data to other hosts. A client serve thread serves an application and
fetches corresponding data from the buffer pools. The buffer pools are essentially
queues shared by reader and writer threads. We utilize the reader-preference lock to
synchronize the threads.

All servers are designed under this multi-thread model which gives the server good
scalability in design. For example, when we add metadata sending and receiving
function to the server, what have to do is just add new threads in it. Similarly, if we
need sensor data recording, a new sensor data consuming thread can be integrated in
the server conveniently.

Fig. 2. The multi-thread structure of the servers.

A

A

To other
servers

A sensor data collecting thread

A sensor data consuming thread

A client serve thread

From
other
server

From file

A queue shared by threads

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

3.2 Video data and metadata distribution

In out current system, the data distribution among different hosts is based on
TCP/UDP. The UDP is adopted for video streams distribution and TCP is used for
metadata transportation. We use MPEG-2 as our video codec and the metadata is
constructed in a MPEG-7 compliant XML data structure. The TCP connections are
built and maintained by servers. We are currently using a global configure file to
enable the servers to find each other and locate the resource.

Since XML data structure is widely used in the platform for metadata sharing and
application-server communications, we design a set of classes for the transparency in
application programming. The inherit structure of the classes are specified as figure 3.

Fig. 3. The inherit structure of the assistant classes used for XML message generating and
sharing. Other classes can be added under this structure due to new requirements.

3.3 Video scalability in application serves

Scalability is required when serve various applications. The scalability can be
studied from three aspects, temporal, spatial and random access. [9] Every time an
application requests a frame from the server, it creates an instance of the
FrameRequest class (shown in figure 3), fills the properties and sends it to the server.
The server then parses the request, pick matching data from buffer pools and do some
transformation before send it to the application.

Table 1. The main properties of the FrameRequest class.

Property name Property description
Camera ID Describe the request video

stream.
Frame interval Describe the frame interval

InfoData

MetaData

ControlData

RequestData

MotioBlob

FaceDescriptor

PTZControl

BlobRequest

FrameRequest

ContextData

ContextRequest

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

from last frame. This enables
applications to get frames in
different frame rate.

Frame size Describe the request frame
size.

Request region Request a special region in the
frame.

Frame type Describe the frame type like
grew level or color image.

3.4 Synchronization of streams

The distribute processing brings synchronization challenges which need to be
solved before the platform can work. Here we give two examples to illustrate the
challenges. In the first example, an application detects the moving area of every frame
as its output. This output is collected and further recorded in an archive file in MPEG-
7 format. For an off-line browsing and retrieval application, when an aim object is
found, it has to locate the frames described in the archive file. In the second example,
a data fusion application uses outputs of different applications to analysis the object’s
location. This means the fusion application has to synchronize different metadata
derived form different camera data.

We use both time and buffer symbol to synchronize the streams and metadata.
When a compressed buffer is obtained from a capture card, a buffer number and a
timestamp will be added to the head of the buffer. To synchronize the video data with
the metadata, the buffer symbol is adopted while to synchronize different video
streams, the timestamp is utilized. An NTP (Network Time Protocol) server is
established to ensure all capture servers to be synchronized to be synchronized with a
common time source. The details are shown in figure 4.

stream1

stream2

…………

……

t

Buffer symbol: 1
Timestamp: 48902187

Buffer symbol: 7
Timestamp: 48902187

A

B

C

C

A A

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

Fig. 4. Because the applications are not synchronized with each other, the frames in stream may
be treated differently. As shown in the figure, the first frame is treated by application A, B and
C. The second one is treated by application A and C. And the third frame is only treated by
application A. Two streams which may start at different time. Each stream marks every buffer
with a buffer symbol and a timestamp. The buffer symbol can not be used for cross stream
synchronization, but can be used for single stream synchronization.

3.5 Storage and retrieval parts

In the platform, the media streams are stored in capture servers while they are
generated. The files are divided into sections in constant time length and named after
the start time and stream ID. The capture server also includes a thread which
responses to other servers’ requests and creates TCP data streams based on the storage
files. Currently an application is built on the archive server to collect metadata from
other servers and construct a MPEG-7 file which describes the video data. Another
application is developed to provide a user interface which help the user efficiently use
the archive files (figure 8).
<Descriptor xsl:type=”MovingRegionType”>
 <MediaLocator>
 <MediaUrl>Video\Cam1_48902187.mpg</MediaUrl>
 </MediaLocator>
 <TextAnnotation>
 <FreeTextAnnotation>Pedestrian</FreeTextAnnotation>
 </TextAnnotation>
 <Descriptor xsl:type=”SpatioTemporalLocator”>
 <FigureTrajectory type=”rectangle”>
 <MediaTime>
 <MediaTimePoint>T00:01:33</MediaTimePoint>
 <MediaDuration>PT1M10S</MediaDuration>
 </MediaTime>
 <Descriptor xsl:type=”TemporalInterpolation”>
 <WholeInterval>
 <MediaDuration>PT1M10S</MediaDuration>
 </WholeInterval>
 …
 </Descriptor>
 </FigureTrajectory>
 </Descriptor>
</Descriptor>

Fig. 5. A sample MPEG-7 code created by the retrieval application which store a
moving object’s trajectory and type.

4 Implementation and results

The servers were implemented with ACE [10] and the MPEG encode and decode
part were using FFmpeg [11]. We currently apply our platform on the project named
On-The-Spot Archiving system. It is an application system operated in the meeting

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

room environment and aims to create meeting archive in on-line. We use two
computers run as capture hosts. One equipped with two capture cards and the other
with three. Several other computers run as process servers and archive server. They
are all connected to a hub through 10Mbps ports.

As latency is a key parameter for soft real-time applications. We design a method
to test the latency form a physical event happens to video frames which describes this
event reach an application. As shown in figure 6, an application is running on
processing server which includes several threads. One thread creates black-white
picture sequence on the LCD screen. This thread simulates an event (which is “screen
become white” event) happens periodically and record the exact time when the event
happens. A camera focuses the LCD screen, and the data is captured by a capture
server and sent back to the process server. Other threads of the application acquire
video frames from the server and check whether they are black or white. These
threads simulate the applications which acquire video streams for analysis. When a
white frame is detected by a thread, it also records the time. The difference between
the show-thread’s time record and the check-threads’ time record is the total time
interval of capture, compress, transmit and buffering. We use two capture servers to
generate 5x1Mbps video streams. One of the streams is used as delay test stream. A
third computer is used for the process server and tests the delay. The delay are
recorded for seven times and shown in figure 7.

From figure 7, it can be found that on a single processor machine, the latency
becomes large when four applications request the same stream. However, on a multi
processor machine, the latency is acceptable even five applications request the same
steam. This implies that when multiple applications running on the same host, the
processing ability of CPU becomes the bottleneck. Allocating some applications to
additional hosts could handle such situations.

Fig. 6. Latency test. An application runs on the process server. It shows black-white frames and
detects them to compute the latency. Black frame lasts for 2s while white frame lasts 40ms.

LAN

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Fig. 7. Some results of the delay test. The left one shows the result of the test program running
on an AMD Athlon 2000+ computer, and the right one is the result running on a dual Xeon
2.4GHz computer. Each colored line represents a thread which simulates an application running
on the platform. For the left one, we test the delay of 1, 2, 3, and 4 threads. For the right one,
we test the delay of 1 and 5 threads.

Fig. 8. The user interface of the off-line browsing and retrieval application.

5 Conclusion and future work

The distributed processing of the video streams improves the flexibility of a
computer vision system. In this paper, we presented a distributed architecture for
complex computer vision application systems. We use multi-servers to meet the
common requirements from most software modules like collecting sensor data
streams, routing metadata and sharing context information. Some module applications

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

have been built on the platform. For example, a motion detection application has been
developed on the platform. The application is originally designed for the project in an
off-line environment, and it performs well on the platform for our On-The-Spot
Archiving system.

Though the proposed architecture is capable to work well as mentioned above, the
performance will be degraded when high resolution video streams are processed. We
adopt 352*288 resolution, 1~2Mbps bit rate as our present video stream parameters.
The decoding of one stream consumes approximately 20% CPU power on an AMD
2000+ computer. For a 640*480 streams, both transportation latency in a 10/100M
LAN and the resource consumption of decoding become high. So the real-time
performance becomes challenging.

Two approaches can be helpful to this problem. First, we leave the high resolution
applications on the capture server and use the hardware decoder of the capture card.
Second, adopt a scalable video codec such as MPEG4-SVC, and run the platform with
high performance switches and multi-core CPUs.

Acknowledgments. This research is supported by NSFC project 60433030 and
60673189. We are thankful for the contributions of our colleagues Luo Sun, Liang
Jiang and Jun Zhang to the platform. We are also thankful for the thoughtful
comments and suggestions of our reviewers.

References

1. Valera, M. Velastin, S.A.: Intelligent distributed surveillance systems: a review. Vision,
Image and Signal Processing, IEE Proceedings-Volume 152, Issue 2, 8 April 2005. P192-
204

2. Mohan M. Trivedi, Tarak L. Gandhi, Kohsia S. Huang.: Distributed Interactive Video Arrays
for Event Capture and Enhanced Situational Awareness. IEEE Intelligent Systems, Sep.
2005

3. Ellis, T.J. Black, J.: A multi-view surveillance system. IEE Colloquium (Digest), 2003 3-
10062 59-63

4. Guangyou Xu, Linmi Tao, David Zhang and Yuanchun Shi.: Dual relations in physical and
cyber space. Chinese Science Bulletin, 2006, 51(1): 121-128

5. Weikai Xie, Yuanchun Shi, Guanyou Xu, et al.: Smart Platform - a software infrastructure
for Smart Space (SISS). Proceedings Fourth IEEE International Conference on Multimodal
Interfaces, 429-34 2002

6. R. J. Francois, Gerard G. Medioni.: A modular middleware flow scheduling framework.
Proceedings of the eighth ACM international conference on Multimedia (2000)

7. M. Michel, V. Stanford, O. Galibert.: Network transfer of control data: An application of the
NIST SMART DATA FLOW. CCCT 2003 VOL, 2

8. D. Doermann, A. Karunanidhi, N. Parkeh, M. A. Khan, S. Chen, H. T. Ozdemir, M. Miwa, K.
C. Lee.: Issues in the transmission, analysis, storage and retrieval of surveillance video.
Proceedings of the 2003 International Conference on Multimedia and Expo (2003)

9. Ziliani, F.: The importance of ‘scalability’ in video surveillance architectures. Imaging for
Crime Detection and Prevention, 2005, P29-32

10. Stephen D. Huston, James CE Johnson, Umar Syyid.: ACE Programmer's Guide, The:
Practical Design Patterns for Network and Systems Programming

11. http://ffmpeg.mplayerhq.hu

 Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007)
 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
 This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de

