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Abstract. In this paper, we focus on calibration of central omnidirectional 
cameras, both dioptric and catadioptric. We describe our novel camera model 
and algorithm and provide a practical Matlab Toolbox, which implements the 
proposed method. Our method relies on the use of a planar grid that is shown by 
the user at different unknown positions and orientations. The user is only asked 
to click on the corner points of the images of this grid. Then, calibration is 
quickly and automatically performed. In contrast with previous approaches, we 
do not use any specific model of the omnidirectional sensor. Conversely, we 
assume that the imaging function can be described by a polynomial 
approximation whose coefficients are estimated by solving a linear least squares 
minimization problem followed by a non-linear refinement. The performance of 
the approach is shown through several calibration experiments on both 
simulated and real data. The proposed algorithm is implemented as a Matlab 
Toolbox, which allows any inexpert user to easily calibrate his own camera. 
The toolbox is completely Open Source and is freely downloadable from the 
author’s Web page. 

Keywords: catadioptric, dioptric, fish eye, omnidirectional, camera, calibration, 
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1   Introduction 

An omnidirectional camera is a vision system providing a 360° field of view of the 
scene. Such an enhanced field of view can be achieved by either using catadioptric 
systems, which opportunely combine mirrors and conventional cameras, or by 
employing purely dioptric fisheye lenses. Furthermore, omnidirectional cameras can 
be classified into two classes, central and non-central, depending on whether they 
satisfy the single effective viewpoint property or not [1]. As shown in [1], central 
catadioptric systems can be built by combining an orthographic camera with a 
parabolic mirror, or a perspective camera with a hyperbolic or elliptical mirror. 
Conversely, panoramic cameras using fisheye lenses cannot in general be considered 
as central systems, but the single viewpoint property holds approximately true for 
some camera models [2].  
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Previous works on omnidirectional camera calibration can be classified into two 
different categories. The first one includes methods which exploit prior knowledge 
about the scene, such as the presence of calibration patterns [3, 4] or plumb lines [5]. 
The second group covers techniques that do not use this knowledge. This includes 
calibration methods from pure rotation [4] or planar motion of the camera [6], and 
self-calibration procedures, which are performed from point correspondences and 
epipolar constraint through minimizing an objective function [7, 8, 9, 11]. All 
mentioned techniques allow obtaining accurate calibration results, but primarily focus 
on particular sensor types (e.g. hyperbolic and parabolic mirrors or fish-eye lenses).  
In the last years, novel calibration techniques have been developed, which apply to 
any central omnidirectional camera. For instance, in [2], the authors extend their self-
calibration procedure described in [8] to mirrors, fisheye lenses, and non-central 
cameras. In [12] and [13], the authors describe a method for central catadioptric 
cameras using geometric invariants. They show that any central catadioptric system 
can be fully calibrated from an image of three or more lines. 
The work described in this paper also handles with calibration of any central 
omnidirectional camera but aims at providing a technique that requires the minimum 
user interaction and that is very easy to apply also for the inexpert user. Indeed, our 
technique requires the use of a chessboard-like pattern that is shown by the user at a 
few different unknown positions and orientations. Then, the user is only asked to click 
on the corner points of the images of the pattern. The strong point of our technique 
resides in the use of a new generalized camera model that adjusts according to the 
appearance of the pattern in the omnidirectional images. 
The method described in this paper has been already introduced in [14] and [15]. The 
novelty of the method resides in the use of a generalized parametric model of the 
sensor, which is suitable to different kinds of omnidirectional vision systems, both 
catadioptric and dioptric. In this model, we assume that the imaging function, which 
manages the projection of a 3D real point onto a pixel point on the image, can be 
described by a polynomial approximation whose coefficients are the parameters to be 
calibrated. This imaging model encapsulates both the intrinsic parameters of the 
camera and the parameters of the mirror without using any specific model for them. 
We show that this model is able to accurately calibrate any central omnidirectional 
camera. Moreover, because of its polynomial form, its parameters turn out to be easy 
to compute. Indeed, the computation is performed by linear least-square minimization 
followed by a non-linear refinement based on the maximum likelihood criterion. 
Another important aspect of our technique is the automatic detection of the center of 
the omnidirectional camera. Indeed, in previous works, the detection of the center is 
performed by exploiting the visibility of the circular external boundary of the mirror. 
In those works, the mirror boundary is first enhanced by using an edge detector, and 
then, a circle is fitted to the edge points to identify the location of the center. In our 
approach, we no longer need the visibility of the mirror boundary. The algorithm 
described in this paper is based on an iterative procedure that uses only the corner 
points selected by the user. 
This paper is organized in the following way. In section 2, we will present our camera 
model. In section 3, we will describe our calibration technique and the automatic 
detection of the center of distortion. In section 5 and 6, we will show the performance 
of the approach through several calibration experiments on both simulated and real 
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data. The reader can find a complete implementation of the proposed algorithm in the 
form of a Matlab Toolbox named “OCamCalib”. We will give an overview of the 
toolbox in section 4. The OCamCalib toolbox is completely Open Source and is freely 
downloadable from the author’s Web page [16]. Because of its ease of use, the 
toolbox turns out to be very practical, and allows any inexpert user to calibrate his 
own omnidirectional camera. 
 
 
2   Camera Model 
 
In this section, we describe our omnidirectional camera model. In the general central 
camera model, we identify two distinct reference systems: the camera image 
plane )','( vu  and the sensor plane )'',''( vu . The camera image plane coincides with the 
camera CCD, where the points are expressed in pixel coordinates. The sensor plane is 
a hypothetical plane orthogonal to the mirror axis, with the origin located at the plane-
axis intersection. 
In figure 1, the two reference planes are shown for the case of a catadioptric system. 
In the dioptric case, the sign of u’’ would be reversed because of the absence of a 
reflective surface. All coordinates will be expressed in the coordinate system placed 
in O, with the z-axis aligned with the sensor axis (see Fig. 1.a). 
Let X  be a scene point. Then, assume T]'',''[ vu='u'  be the projection of X  onto the 
sensor plane, and T]','[ vu=u'  its image in the camera plane (Fig. 1.b and 1.c). As 
observed in [8], the two systems are related by an affine transformation, which 
incorporates the digitizing process and small axes misalignments; thus tA += u''u' , 
where 22A xℜ∈ and 12t xℜ∈ .  
At this point, we can introduce the imaging function g, which captures the 
relationship between a point 'u' , in the sensor plane, and the vector p emanating from 
the viewpoint O to a scene point X (see figure 1.a). By doing so, the relation between 
a pixel point u’ and a scene point X is: 
 

( ) ( ) 0      ,  P  tA      >=+⋅=⋅=⋅ λλλλ Xu'g'u'gp ,                     (1) 
 
where 4ℜ∈X is expressed in homogeneous coordinates and 3x4P ℜ∈ is the perspective 
projection matrix. By calibration of the omnidirectional camera we mean the 
estimation of the matrices A and t and the non linear function g, so that all vectors 
( )tA +u'g  satisfy the projection equation (1). We assume for g the following 

expression 
( ) ( )( )T, u'',v''fu'',v''u'',v'' =g ,                                  (2) 

 
Furthermore, we assume that function f depends on u’’ and v’’ only 
through 22 '''''' vu +=ρ . This hypothesis corresponds to assume that function g is 
rotationally symmetric with respect to the sensor axis. 
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(a) (b) (c) 

Fig. 1. (a) Coordinate system in the catadioptric case. (b) Sensor plane, in metric coordinates. 
(c) Camera image plane, expressed in pixel coordinates. (b) and (c) are related by an affine 
transformation. 

Function f  can have various forms depending on the mirror or the lens construction. 
These functions can be found in [10, 11, and 17]. Unlike using a specific model of the 
sensor, we chose to apply a generalized parametric model of f , which is suitable to 
different kinds of sensors. The reason for doing so, is that we want this model to 
compensate for any misalignment between the focus point of the mirror (or the 
fisheye lens) and the camera optical center. Furthermore, we desire our generalized 
function to approximately hold with those sensors where the single viewpoint 
property is not exactly verified (e.g. generic fisheye cameras). As we proved in our 
earlier work [15], we can use  the following polynomial form for f  

 

( ) N
Naaau'',v''f ,,2,,

20 ... ρρ +++= ,                                  (3) 
 

where the coefficients ...N 2, 0,   , =iai  and the polynomial degree N are the 
calibration parameters that we want to determine. Observe that the first order term has 
been removed [15]. To resume, equation (1) can be rewritten in this way: 
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3.   Camera Calibration 
 
3.1   Solving for Intrinsic and Extrinsic Parameters 
 
According to what we told so far, to calibrate an omnidirectional camera, we have to 
estimate the parameters A, t, ,...,, 20 aa and Na . 
In our approach, we decided to split the estimation of these parameters into two 
stages. In one, we estimate the affine parameters A and t. In the other one, we estimate 
the coefficients ,...,, 20 aa  and Na . 
The parameters A and t describe the affine transformation that relates the sensor plane 
to the camera plane (figures 1.b and 1.c). A is the stretch matrix and t is the translation 
vector ccOI (figure 1.c).  To estimate A and t we introduce a method, which, unlike 
other previous works, does not require the visibility of the circular external boundary 
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of the mirror (sketched by the ellipse in figure 1.c). This method is based on an 
iterative procedure, which starts by setting A to the identity matrix Eye and t=0. This 
assumption means that the camera plane and the sensor plane initially coincide. The 
correct elements of A will be estimated afterwards by non-linear refinement, while t 
will be estimated by an iterative search algorithm. This approach will be detailed in 
section 3.2 and 3.3. 
According to this, from now on we assume A=Eye and t=0, which means u''u' = . 
Thus, by substituting this relation in (4) and using (3), we have the following 
projection equation 
 

( )
( )

0   ,P
'...'

'           
'           

'
'    
'    

''
''
''

2
20

>⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++

⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅ λ

ρρ
λ

ρ
λλλ Xu'g

N
Naaa

v
u

f
v
u

w
v
u

 ,        (5) 

 

where now 'u and 'v  are the pixel coordinates of an image point with respect to the 
image center, and 'ρ is the Euclidean distance. Also, observe that now only N 
parameters ( Naaa ,...,, 20 ) need to be estimated. From now on, we will refer to these 
parameters as intrinsic parameters. 
During the calibration procedure, a planar pattern of known geometry is shown at 
different unknown positions, which are related to the sensor coordinate system by a 
rotation matrix 33xR ℜ∈ and a translation 13xT ℜ∈ . R and T will be referred to as 
extrinsic parameters. Let iI be an observed image of the calibration 
pattern, ],,[ ijijijij ZYX=M the 3D coordinates of its points in the pattern coordinate 
system, and T],[ ijijij vu=m the correspondent pixel coordinates in the image plane. 
Since we assumed the pattern to be planar, without loss of generality we have 0=ijZ . 
Then, equation (5) becomes: 
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where 21 r,r and 3r are the column vectors of R. 
Therefore, in order to solve for camera calibration, the extrinsic parameters have also 
to be determined for each pose of the calibration pattern. Observing equation (6), we 
can eliminate the dependence from the depth scale ijλ by multiplying both sides of the 
equation vectorially by ijp . This implies that each point jp  contributes three 
homogeneous non linear equations: 
                           

0)()()( 2222133231 =++⋅−++⋅ tYrXrftYrXrv jjjjjj ρ  (7.1) 
0)(  )()( 3323111211 =++⋅−++⋅ tYrXrutYrXrf jjjjjjρ  (7.2) 

⎪
⎩

⎪
⎨

⎧

0 )( )( 1121122221 =++⋅−++⋅ tYrXrvtYrXru jjjjjj  (7.3) 
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where the sub-index i has been removed to lighten the notation, and 21 , tt and 3t are the 
elements of T. Observe that in (7), jj YX , and jZ are known, and so are jj vu , . Also, 
observe that only (7.3) is linear in the unknown 2122211211 ,,,,, ttrrrr . From now on, the 
details for the resolution of equation (7) can be found in [15]. The principle of the 
technique consists in first solving for the parameters ,,,,, 122211211 trrrr and 2t  by linearly 
solving equation (7.3). Next, we use the solution of (7.3) as input to (7.1) and (7.2), 
and solve for the remaining parameters Naaa ,...,, 20 and 3t . In both steps, the solution 
is achieved by using linear least-square minimization.  

 
3.2   Detection of the Image Center 
 
As stated in section 1, a peculiarity of our calibration toolbox is that it requires the 
minimum user interaction. One of the tools that accomplish this task is its capability 
of identifying the center of the omnidirectional image cO (figure 1.c) even when the 
external boundary of the sensor is not visible in the image. 
At the beginning of section 3.1, we made the following assumptions for A and t, 
namely A=Eye and t=0. Then, we derived the equations for solving for the intrinsic 
and extrinsic parameters that are valid only under those assumptions. 
 

In figure 2.a, the reader can see what happens when the position of the center is 
correct. The red crosses are the input calibration points selected by the user. The 
green rounds are the 3D points reprojected onto the images according to the intrinsic 
and extrinsic parameters estimated by the calibration. As the reader can see, the 3D 
points perfectly overlay the input points, meaning that the calibration worked 
properly. Figure 2.b shows the result when the input position of the center is wrong, 
that is, the reprojection error is large. Motivated by this observation, we performed 
many trials of our calibration procedure for different center locations, and, for each 
trial, we computed the Sum of Squared Reprojection Errors (SSRE). As a result, we 
verified that the SSRE always has a global minimum at the correct center location. 
This result leads us to an exhaustive search of the center cO , which stops when the 
difference between two potential center locations is smaller than a certain ε (we used 
ε=0.5 pixels). The algorithm is the following: 
1. At each step of this iterative search, a fixed number of candidate center locations 

is uniformly selected from a given image region. 

X

Y

 

X

Y
O

 
(a) (b) 

Fig. 2. Corret position if the center (a). Wrong position of the center (b). 
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2. For each of these points, calibration is performed by using that point as a 
potential center location and SSRE is computed.  

3. The point providing the minimum SSRE is taken as a potential center.  
4. The search proceeds by selecting other candidate locations in the region around 

that point, and steps 1, 2 and 3 are repeated until the stop-condition is satisfied. 
Observe that the computational cost of this iterative search is so low that it takes less 
than 3 seconds to stop. At this point, the reader might be wondering how we do 
estimate the elements of matrix A. In fact, at the beginning we assumed A=Eye. The 
iterative algorithm mentioned above exhaustively searches the location of the center 
(namely cO ) by leaving A unchanged. The reason for doing so is that the eccentricity 
of the external boundary of an omnidirectional image is usually close to zero, which 
means A~Eye. Therefore, we decided to estimate A in a second stage by using a non 
linear minimization method, which is described in section 3.3.  
 

 
3.3   Non-Linear Refinement 
 
The linear solution given in section 3.1 is obtained through minimizing an algebraic 
distance, which is not physically meaningful. To this end, we chose to refine the 
calibration parameters through maximum likelihood inference. Let us assume that we 
are given K images of the calibration grid, each one containing L corner points. Next, 
let us assume that the image points are corrupted by independent and identically 
distributed noise. Then, the maximum likelihood estimate can be obtained by 
minimizing the following functional: 
 

( )∑∑
= =

−=
K

i

L

j
N20cij ,,...,a,aaO,ARmmE

1 1

2^
,,, jii MT ,                     (8)  

where ( )jii MT ,,...,a,aaO,ARm N20c ,,,
^

is the reprojection of the point jM of the grid i 
according to equation (1). iR and iT are the rotation and translation matrices of each 
grid pose. iR is parameterized by a vector of 3 parameters related to iR by the 
Rodrigues formula. Observe that now we incorporate into the functional both the 
stretch matrix A and the center of the omnidirectional image cO . To minimize (8), we 
used the Levenberg-Marquadt algorithm as implemented in the Matlab function 
lsqnonlin. The algorithm requires an initial guess for the parameters. These initial 
parameters are the ones obtained using the linear technique described in section 3.1. 
As a first guess for A, we used the identity matrix, while for cO  we used the position 
estimated through the iterative procedure explained in section 3.2. 
 
4.   Introduction to the OCamCalib Toolbox for Matlab 
 
The reason why we implemented the OCamCalib Toolbox for Matlab is to allow any 
user to easily and quickly calibrate his own omnidirectional camera. The OCamCalib 
toolbox can be freely downloaded from the Author’s web page [16] (or google for 
“ocamcalib”). The outstanding features of the toolbox are the following: 
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 Capability of calibrating different kinds of central omnidirectional cameras 
without any knowledge about the parameters of the camera or about the shape of 
the mirror. 

 Automatic detection of the center. 
 Visual feedback about the quality of the calibration result by reprojecting the 3D 

points onto the input images. 
 Computer assisted selection of the input points. Indeed, a corner detector assists 

the selection of the corner points on the calibration pattern. 
 
5   Experimental Results on Simulated Data 
 
5.1   Performance with respect to the noise level 
 
We evaluated the performance of our algorithm through calibration experiments both 
on synthetic and real images. In particular, we used synthetic images to study the 
robustness of our calibration technique in case of inaccuracy in detecting the 
calibration points. To this end, we generated several synthetic poses of a calibration 
pattern. Then, Gaussian noise with zero mean and standard deviation σ was added to 
the projected image points. We varied the noise level from σ=0.1 to σ=3.0 pixels, 
and, for each noise level, we performed 100 independent calibration trials and 
computed the mean reprojection error (SSRE).  
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Fig. 3. Mean SSRE versus σ. When using 
the linear minimization alone (dashed line) 
or along with the non-linear refinement 
(solid line). 

Fig. 4 Mean SSRE versus the number of 
images for different polynomial degrees: 2nd 
order (black× ), 3rd order (blue • ) and 4th 
order (red o ).   

 
Figure 3 shows the plot of the mean SSRE as a function of σ. Observe that we 
separated the results obtained by using the linear minimization alone from the results 
of the non-linear refinement. As the reader can see, in both cases the average error 
increases linearly with the noise level. Furthermore, the reprojection error of the non-
linear estimation keeps always smaller than the error computed by the linear method. 
Finally, notice that when σ=1.0, which is larger than the normal noise in practical 
situations, the SSRE of the non-linear method is lower than 0.4 pixels. 
In Fig. 5, we show the 3D points of a simulated grid reprojected onto the image. The 
ground truth is represented by red crosses, while the blue rounds represent the 
calibration points perturbed by noise with σ=3.0 pixels. Notice that, despite the large 
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amount of noise, the calibration is able to compensate for the large error introduced. 
In fact, after calibration, the reprojected calibration points (red squares) are very close 
to the ground truth. 
We also want to evaluate the accuracy in estimating the extrinsic parameters R and T 
of each calibration plane. To this end, figure 6 shows the plots of the absolute error 
(measured in mm) in estimating the origin coordinates (x, y and z) of a given grid. The 
absolute error is very small because it keeps always smaller than 2mm. Even though 
we do not show the plots here, we also evaluated the error in estimating the correct 
plane orientations, and we got an average absolute error less than 2°. 
 

500 550 600 650 700 750

620

640

660

680

700

720

740

760

780

 

Fig. 5. An image of a simulated calibration 
grid, projected onto the simulated 
omnidirectional image. Calibration points are 
affected by noise with σ =3.0 pixels (blue 
rounds). Ground truth (red crosses). 
Reprojected points after the calibration (red 
squares). 

Fig. 6. Accuracy of the extrinsic parameters: 
the absolute error (mm) of the translation 
vector vs. de noise level (pixels). The error 
along the x, y and z coordinates is 
represented respectively in red, blue and 
green. 

 
 
6   Experimental Results on Real Data 
 
6.1   Performance w.r.t. the Number of Planes and to the Polynomial degree 
 
In this section, we present the calibration performance on real data. In these 
experiments, we calibrated a catadioptric system made up of a KAIDAN 360° One 
VR hyperbolic mirror and a SONY CCD camera the resolution of 900x1200 pixels. In 
the first experiment, we investigated the performance of our technique with respect to 
the number of images of the calibration grid, for a given polynomial degree. We 
varied the number of pictures from 2 to 11, and for each set we performed the 
calibration and computed the SSRE. The SSRE versus the number of images is 
plotted in Fig. 4 for different polynomial degrees. Note that the error decreases as the 
number of images augments. Moreover, by using a fourth order polynomial, we 
obtain the minimum SSRE value. A third order polynomial also provides a similar 
performance when more than four images are taken. Conversely, when using a second 
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order polynomial, the SSRE keeps higher. Thus, in practical applications we always 
use a fourth order approximation. In calibrating our omnidirectional camera, we got a 
reprojection error of 0.3 pixels using a fourth order polynomial.  

 
6.2   Structure from Motion 
 
An indirect method to evaluate the quality of the calibration of a real camera consists 
in reconstructing the 3D structure of an object from its images and checking then the 
quality of the reconstruction. This problem is well known by the computer vision 
community as structure from motion. The object we used in this experiment is a 
trihedron made up of three orthogonal chessboard-like patterns of known geometry 
(Fig. 7). After calibrating the camera, we took two images of the trihedron from two 
different unknown positions (Fig. 7). Next, we picked up several point matches from 
both views and we applied the Eight-Point algorithm [18]. The results of the 
reconstruction, after rendering, are shown in Fig. 7. As the reconstruction with one 
single camera can be done up to a scale factor, we recovered the scale factor by 
comparing the average size of a reconstructed checker with the real size on the 
trihedron. In the end, we computed the angles between the three planes fitting the 
reconstructed points and we found the following values: 94.6°, 86.8° and 85.3°. 
Moreover, the average distances of these points from the fitted planes were 
respectively 0.05 cm, 0.75 cm and 0.07 cm. Finally, being the size of each checker 6.0 
cm x 6.0 cm, we also calculated the dimension of every reconstructed checker and we 
found an average error of 0.3 cm. These results comply with the expected 
orthogonality of the surfaces and the size of the checkers in the ground truth. 
 

 
Fig. 7. The input images for the 8-Point algorithm (left) and the reconstruction results (right). 

 
6.3   Mapping Color Information on 3D point clouds from a Laser Range Finder 

 
One of the challenges we are going to face in our laboratory consists in getting high 
quality 3D maps of the environment by using a 3D rotating laser range finder  (SICK 
LMS200 [19]). Since this sensor cannot provide the color information, we used our 
calibrated omnidirectional camera to project the color onto each 3D point. The results 
are shown in Fig. 8. In order to perform this mapping both the intrinsic and extrinsic 
parameters have to be accurately determined. Now, the extrinsic parameters describe 
position and orientation of the camera frame with respect to the laser reference frame. 
Observe that even small errors in estimating the correct intrinsic and extrinsic 
parameters would produce a large offset into the output colorful map. In this 
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experiment, the colors well reprojected onto the 3D structure of the environment, 
showing that the calibration was accurately done.  
 

 
7   Conclusions 
 
In this paper, we presented a method for calibrating central omnidirectional cameras 
both dioptric or catadioptric. The method relies on a generalized parametric function 
that describes the relation between a given pixel point and the correspondent 3D 
vector emanating from the single effective viewpoint of the camera. We describe this 
function by means of a polynomial approximation whose coefficients are the 
parameters to be calibrated. The performance of the approach was evaluated through 
several experiments both on synthetic and real data. The results showed that this 
technique is very accurate as the mean reprojection error is smaller than 0.4 pixels in 
practical situations. We also showed the accuracy of the result by performing 
structure from motion with a calibrated camera. The results showed a very good 
agreement between the ground truth and the reconstructed object. Another 
performance evaluation was for projecting the color information of an image onto real 
3D points coming from a 3D sick laser range finder. To make our method usable and 
applicable for any user, we implemented the whole algorithm in the form of a Matlab 
Toolbox named OCamCalib [16]. The toolbox is completely Open Source and can be 
freely downloaded from the author’s Web page [16]. Because of its ease of use, the 
OCamCalib toolbox turns out to be very practical, and allows any inexpert user to 
calibrate his own omnidirectional camera. 

 
 

 

   
Fig. 8. The panoramic picture shown in the upper window was taken by using a hyperbolic 
mirror and a perspective camera the size of 640x480 pixels. After calibration, the color 
information was mapped onto the 3D points extracted by a rotating sick laser range finder. In the 
lower windows are the results of the  mapping. The colors are well reprojected onto the 3D 
structure of the environment, showing that the camera calibration was accurately done.  
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