
Architecture and Tracking Algorithms for a
Distributed Mobile Industrial AR System

R. Koch1, J.-F. Evers-Senne1, I. Schiller1, H. Wuest2, and D. Stricker2

1 Institute for Computer Science, Christian-Albrechts-University, Kiel, Germany
2 FHG-IGD, Darmstadt, Germany

Abstract. In Augmented Reality applications, a 3D object is registered
with a camera and visual augmentations of the object are rendered into
the users field of view with a head mounted display. For correct rendering,
the 3D pose of the users view w.r.t. the 3D object must be registered and
tracked in real-time, which is a computational intensive task. This contri-
bution describes a distributed system that allows to track the 3D camera
pose and to render images on a light-weight mobile front end user inter-
face system. The front end system is connected by WLAN to a backend
server that takes over the computational burden for real-time tracking.
We describe the system architecture and the tracking algorithms of our
system.

1 Introduction

Augmented Reality (AR) aims at rendering 3D object information into the users
field of view. The virtual elements are merged into the real view by a half-
transparent display in front of the users eyes (See-Through-Augmentation) or by
mixing the images of a camera with the rendering on an opaque standard display
(Video-See-Through, Video-Augmentation). In industrial service augmentation
scenarios, 3D information is presented to the service technician into the field of
view for hands-free operation. Compositing of virtual objects with real views
provides acceptable results only if the 3D position and orientation of the users
head w.r.t. the service object is tracked during operation. The tracking allows
to adjust the rendering of the virtual elements such that they appear to be
fixed on the service object. Tracking is demanding as the technician may move
rapidly and look around, loosing sight of the object to be augmented. Time delays
in rendering and non-real-time augmentations must be avoided by all means.
While real-time tracking is a computationally intensive task, it is also mandatory
that mobile AR systems are light-weight, easy to carry, and have low power
consumption. These conflicting requirements are solved by your distributed AR
system. The system is split into a light-weight mobile front end and a backend
computing server which are connected by wireless LAN. The scenario of such a
system is sketched in figure 1.

This contribution is focused on the design architecture and the tracking al-
gorithms for a mobile marker-less vision-based AR system. After a short review
on related work we will describe the system architecture and the vision-based
tracking algorithms. We close with results on the distributed system.
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Fig. 1. Augmented Reality scenario using a distributed tracking system.

2 Related work

Augmented Reality involves many different aspects like rendering, tracking, dis-
play hardware, computers, sensors, authoring, software architecture and user in-
terface design. A classification of AR systems and applications is given by Azuma
[1, 2]. He presented different fields of application, discussed the differences be-
tween See-Through- and Video-See-Through augmentation and analyzed several
tracking approaches. He identified the “Registration Problem” as the most chal-
lenging problem in AR. Most of todays available AR systems are using fiducial
markers [14, 15] or special devices to track the user and/or tools [12]. Medical AR
systems to support surgery have been investigated and evolved quickly [8]. They
are installed and used in well controlled small environments where elaborated
marker tracking devices can be utilized.

Feiner [7] presented a mobile long range AR system to help people navigate
through unknown terrain or supply them with location based information. But
for our purpose this system lacks the accuracy and makes use of GPS which
restricts them to out-door usage.

A marker-less vision-based approach is used in [5] where visitors of archaeo-
logical sites can use a Video-See-Trough display to view ancient buildings. The
tracking in this case is reduced to 2D image registration, eventually guided by
rotation data from the tilt and swivel base. In the ARVIKA project [4] an AR
system for industrial service applications has been developed, but the main focus
in that project was the user interface, the authoring of information and the ani-
mated visualization. The registration problem as well as object identification and
tracking has been solved with fiducials. Recently, Reitmayr and Drummond[19]
presented a robust system for Outdoor AR that registers buildings by edge and
surface tracking, with the additional help of an inertial sensor. The system ar-
chitecture is quite similar to the proposed system which was developed in the
ARTESAS project.

In the ARTESAS project [9], one main focus is to develop vision based
marker-less tracking for industrial service applications. The user wears a HMD
with a small head-mounted camera. The head position of the user relative to the
service object (e.g. an industrial part like a car engine) is registered by aligning
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the given 3D CAD model of the object with the view of the real object as seen
by the head camera. From then on the head position and orientation is tracked
relative to this initialization. Care is taken to handle fast head motions and to
cope with tracking disruptions.

3 System Architecture

The AR-application is split into the AR-Browser which displays the output and
interacts with the user, and the Tracking Framework which is responsible for
pose computation. Fig. 2 shows the main components.

(a) (b)

Fig. 2. (a) The basic architecture of the system. (b) Mobile subsystem Sony Vaio VGN-
U70,Pentium M 1.0 GHz, Dimensions: 16.8 x 10.8 x 2.8 cm3, Weight: 550g. It displays
the tracking of a car engine. The augmentation shows where to mount a certain part.

The Tracking-Framework is designed to combine different tracking algorithms
to fulfill different tasks like initialization, tracking, re-registration, latency com-
pensation and inertial sensor fusion. Internally, the Tracking-Manager acts as a
state machine with three different states: Init, ReInit, Track. Tracking always
starts in the Init-state, which means that absolute position and orientation of
the user with respect to the object has to be registered once. If this succeeds,
the Tracking-Manager changes its state to Track, which means that the pose is
tracked relative to a given start pose (the initialization). If this tracking fails
(motion blur, corrupted images), the state is set to ReInit and a different al-
gorithm has to re-register again to find an absolute pose and to switch back to
tracking.

Each algorithm is implemented as a “component” with a well defined in-
terface, such that it can be replaced by a different implementation easily. The
Tracking-Manager itself consists of the state machine and several “hooks” (point-
ers) to attach components to. Depending on the current state and the last tran-
sition, one or more components are triggered to work. The image source is also
realized as a component and can be exchanged by implementations for different
cameras.
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(a) (b)

Fig. 3. (a) Modules of the Tracking-Framework in the distributed system. (b) States
and transitions of the Tracking-Manager. The transitions correspond to the result of
the previously executed algorithm.

3.1 Distributed System Architecture

The system may be designed as single processor system or in a distributed pro-
cessing environment. In a distributed environment, a light-weight portable sub-
system serves to acquire image and sensor data and to render the augmentations
into the users view. Typically this subsystem should be easy to carry, with wire-
less access and low power consumption. Unfortunately, such a subsystem does not
have sufficient processing power for real-time tracking. Therefore, a backend sub-
system is connected with the portable system with sufficient processing capacity.
Most important, the distributed system was designed to optimize user comfort
(small size, long battery life etc) and at the same time to minimize the neces-
sary transmission bandwidth between portable subsystem and backend server.
Such a distributed system was realized as an extension to the ARTESAS system.
The computationally intensive tracking part was separated into fast 2D feature
matching on the mobile subsystem and robust 3D tracking estimation on the
backend server. The optimization strategy how to minimize transmission band-
width and maintain a lightweight mobile system is described in detail in [23].
The components of the distributed system and the corresponding state machine
is shown in fig. 3.

4 Tracking Algorithms

The core of each tracking framework are the vision-based algorithms which are
separated into the Init, Reinit and Tracking state. In the ARTESAS project
three different algorithms are used in the three different states. Each is selected
for its special abilities.
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4.1 Initialization and Registration with 3D model

To initialize the first camera pose we use a semi-automatic model-based ap-
proach, which tries to fit a given 3D line model to edges in an image. As only
a local search is performed, the user has to move either the real or the virtual
camera until the 3D line model roughly overlays the corresponding object in the
image. Our implementation is based on the work of [20] and [18]. More details
can be found in [10].

The camera pose estimation is based on the minimization of the distance
between a projected 3D line and a 2D line in the image. A very efficient technique
to create correspondences between 2D image points and 3D model points is to
create control points on the projected lines and to perform a one-dimensional
search for gradient maxima along the orthogonal direction of the regarded line.
As it is difficult to decide which of the gradient maxima really correspond to
the control point on the projected line, more than one point is considered as
a possible candidate. In [18] it was shown that using multiple hypotheses of
gradient maxima can prevent the tracking of being perturbed by misleading
strong contours. When more than one gradient maximum exists for a control
point, then during the minimization always that hypothesis is used which has
the closest distance to the projected control point. If pi is the ith control point
and qi,j is the jth hypothesis of the ith control point, then the error to be
minimized can be expressed as

err =
∑

i

min
j

∆(pi, qi,j) (1)

where ∆ is the distance function between the projected control point pi and the
edge feature point qi in the image. The distance function can be written as:

∆(pi, qi) = |(qi − pi) · (ni)| (2)

where ni indicates the normal of the projected line.
To make the pose estimation robust against outliers, an estimator function

can be applied to the projection error. As recommended in [18] we use the Tukey
estimator ρTuk in our implementations as robust estimator. Together with the
estimator function we can write the error as follows:

err =
∑

i

ρTuk(min
j

∆(pi, qi,j)) (3)

For the camera pose estimation this error function is numerically minimized by
using Levenberg-Marquardt.

To decide if a tracking step was successful the line model is projected into
the image with the computed camera pose. For every control point the average
deviation of the direction of the projected lines to the direction of the image
gradient is calculated and weighted with the absolute value of the image gradient.
If the average of these values is smaller than a given threshold, the line model
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(a: Starting pose) (b: registered pose)

Fig. 4. Initialization with a line model. In (a) the initial starting position of the line
model is illustrated, (b) shows the line model after the automatic registration.

is well aligned to edges in the image and the initialization of the camera pose is
regarded as successful.

For initialization, we perform the line model registration on several levels of
the image pyramid. Thereby the size of the convergence region gets bigger and
the final registration result is more accurate. The line model which is used as
input for the initialization can be automatically generated out of a polygonal
model. In [11] a possible method is proposed, which extracts a line model out
of a rendered scene, by analyzing discontinuities of the z-buffer image. Thereby
a line model is generated which consists of 3D lines only visible from the given
view. Fig. 4 shows the result of line matching for an industrial object.

4.2 Real-time object tracking

Tracking is performed by finding 2D features (intensity corners) in the camera
image, by establishing 2D-3D correspondences with the underlying 3D model,
and by tracking the 2D feature from frame to frame. The correspondence between
the 2D image and 3D model is known because the initialization registers the 3D
camera pose w.r.t. the 3D model. The 3D surface model is rendered onto the
registered view and the depth buffer is extracted from the renderer. For each
2D feature, the associated depth value can then be read out to form the 3D
correspondence. This model-based tracking allows the efficient computation of
the desired camera pose. Robustness is achieved by pyramid-based tracking and
a RANSAC algorithm for pose estimation that can handle features on moving
objects gracefully [22].

The 2D feature tracks can be computed efficiently on the mobile subsystem
and sent to the backend system which computes the pose robustly, having suffi-
cient computational resources. In addition to model-based tracking, 2D feature
tracks without known 3D correspondences can be used to establish further 3D
points by triangulating novel 3D correspondences from separate view points,
even outside of the given 3D model. These correspondences stabilize the track-
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ing if correspondences on the object are lost or if the user looks away from the
object.

4.3 Reinitialization

A reinitialization is needed in case that a user looks away from the object for a
short time and feature tracking is lost. The ReInit state is similar to the Init state
but in contrast to the Init, no user interaction is required. The basic algorithm
used for re-registration is a feature matcher using SIFT descriptors [21]. This
ReInit module is triggered to “learn” a pose and features during tracking. Before
initialization, the SIFT matcher is not able to compute a pose. Immediately after
initialization, the absolute pose and the corresponding camera image is used to
generate a first set of reference keys and model-based 2D-3D correspondences.
If tracking is interrupted, the ReInit algorithm is called with the next image,
trying to find 2D-2D correspondences to one of the reference views, and then
calculates the absolute pose from the new 2D-3D correspondences.

A new reference image and a corresponding camera pose are stored only if
no reference image with similar camera pose already exists. In every reference
image point features are extracted and 2D/3D-correspondences are created by
projecting the 2D points onto the 3D geometry model. Correspondences of 3D
coordinates and and 2D points in the camera image are obtained by a wide base-
line matching of SIFT features [21] between a reference image and the current
camera images. By analyzing the histograms, the reference images are ordered
in similarity, and only those which resemble the current camera image are used
in decreasing order of similarity for the re-initialization of the camera pose.

4.4 Latency Compensation and Inertial data fusion

For Video-See-Through augmentation, the time delay between image capture
and rendering determines the frames per second which can be processed. The ac-
curacy of the augmentation is not affected by this latency because the computed
pose belongs exactly to one image. This changes if real See-Through augmenta-
tion [3] is used. Assuming, the user moves his head, his view changes over time.
After finishing the computation of the pose, the virtual 3D objects are rendered
for this pose, which belongs to an image from some time in the past. But due
to the users movements, the rendering does not match his current view. In fact,
the lag or latency is determined by three times:

tlag = timage + tprocessing + trendering.

timage is the image read time from capture until access in memory. This amount
of time is nearly constant over time and can be measured beforehand. tprocessing

is the time required to compute the pose. It can vary from frame to frame but it
can be determined exactly. trendering is the time for rendering and displaying. It
can vary depending on the content to be rendered, it can be measured coarsely
but for typical AR trendering << timage + tprocessing can be assumed.
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To reduce the visible latency, the following assumptions and instrumenta-
tion can help. The quickest move to change the view a human can do is to
turn his/her head. This can easily exceed a rate-of-turn up to 720◦/s. Com-
pared to these dynamics, lateral movements are slow, the change in view is
small and these movements can be predicted better. Adding an inertial sensor
with a high measurement frequency and a short latency allows to update the
rotational component of the computed pose right before rendering. The transla-
tional components of the computed pose can be updated by a motion model. We
have therefore added an inertial sensor with a read lag time of only 8 ms that al-
lows to compensate the delay of camera pose. Following the ideas of [13], all pose
updates are realized using an Extended Kalman Filter and the implementation
is encapsulated as a component Fusion for pose update and lag compensation.

4.5 Distributed Tracking Framework

Computing the pose on a backend PC and rendering on the mobile computer
means that one instance of the Tracking-Framework has to run on each sys-
tem. By attaching specialized components, network connections between both
instances can be established, as shown in fig 3.

The EdgeInit module should run on the backend machine, therefore it has
to be replaced on the mobile system by a component which sends the current
image over the network and waits for the answer to hand it back to its Tracking-
Manager. On the backend side, the EdgeInit component expects to receive images
from a component on the Image-Source hook. Implementing an Image-Source
component which receives compressed images over the network solves this prob-
lem without modifying the EdgeInit component. Poses and result codes have to
be sent from the backend to the mobile system in any state and for every frame.
For this purpose, the Tracking-Manager is extended by a new pose process hook.
A Pose-Sender component can than be attached to communicate tracking results
to the client. The Tracking-Manager expects the tracking result directly from
the components it called. Therefore these components have to receive the results
themselves. Because this is the same for InitViaNet, ReInitViaNet and Tracking,
a shared network communication layer is introduced.

5 Results

The system has been tested by tracking an industrial object (the motor of a
car) for which the exact geometry is known by its 3D CAD surface model.
Images of size 320x240 pixel, 8 bit monochrome, were used for testing. During
initialization, about 10 fps are sent with JPEG compression, which reduces the
bandwidth to 1 Mbit/s, with a computational load on the mobile system of
only 35%. During tracking, a continuous rate of 20 to 40 fps can be achieved
while reducing the requested bandwidth to 180 - 330 kbps. Therefore, in a single
WLAN channel, many AR systems can run concurrently, allowing many service
technicians to work in the same environment. In addition, the CPU load leaves
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room for additional tasks like speech analysis to control the interface hands-free.
Fig. 5 shows the performance of the system for network and CPU load.
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Fig. 5. Network load (incl. TCP overhead) and CPU load of the mobile system.

6 Conclusions and Future Work

We have presented a distributed marker-less AR system that allows to register
and track 3D objects in real-time and to simultaneously render augmentations
into the users view with high quality. The wireless wearable front end system
is lightweight and allows high mobility while the connected backend system
allows high quality tracking. The tracking is distributed with rendering, 2D
image compression and 2D feature tracking on the front end, and 3D processing
on the backend system. The performance evaluation shows that the front end
system may even run with lower performance to extend battery lifetime.
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