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Abstract. Camera calibration is a critical problem in computer vision.
This paper presents a new method for extrinsic parameters computation:
images of a ball rolling on a flat plane in front of the camera are used to
compute roll and pitch angles. The calibration is achieved by an iterative
Inverse Perspective Mapping (IPM) process that uses an estimation on
ball gradient invariant as a stop condition. The method is quick and as
easy to use as throw a ball and is particularly suited to be used to quickly
calibrate vision systems in unfriendly environments where a grid is not
available. The algorithm correctness is demonstrated and its accuracy is
computed using both computer generated and real images.

1 Introduction

The recovery of 3D information from images is one of the main problems in com-
puter vision, which needs the precise knowledge of both intrinsic and extrinsic
parameters. While intrinsic parameters can be computed once for a given cam-
era (with constant focal length), extrinsic parameters need a new measurement
every time the camera is moved. For a camera mounted on a vehicle, the main
problem is the computation of camera orientation whose drifts are mainly due
to vibrations. Calibration is a critical and hard process which generally needs a
large infrastructure such as a grid with markers at known positions. For example
in the DARPA Grand Challenge project [1] (in which our team built a self-guided
truck that completed the whole course using vision as primary sensor) we had
the need to often recalibrate the cameras in the Mojave desert (Nevada). In such
extreme environments a quick and easy calibration is mandatory. The use of a
ball to calibrate is based on the assumption that a sphere has the same shape
when framed from different points of view. The bowling ball is chosen because
no deformations are possible, but any other ball can be used, assuming that
deformations will be ignored. A number of images with the ball in different posi-
tions must be acquired for the calibration. These images are obtained throwing
a ball on a flat plane, avoiding bounces. Intrinsic parameters of the camera and
its position together with ball size must be known to apply this method. This
kind of method can be used to compute pitch and roll angles; it was chosen not
to use any other world reference, so it is impossible to estimate the yaw angle.
The aim is to obtain a real time calibration system: this version of the algorithm
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is not working in real time yet but its development was studied in such a way
that the transition to real time will be straightforward.
Methods for recovering intrinsic and extrinsic camera parameters are usually
classified into two categories.
The first category includes self-calibration methods, which achieve calibration
using multiple views of a static scene from a moving camera, eg. those described
in [2] and [3]. The second approach exploits a calibration object. These meth-
ods can be further classified according to the information about the calibration
object. Some methods assume to know the 3D position of a sufficient number of
points (or equivalently the position of a known shape). To this category belongs
the approach proposed by Tsai in [4], the DLT method firstly introduced by
Abdel-Aziz et al. in [5] and the algorithm described in [6]. Other methods need
only generic 3D geometry information, eg. coplanar points, as shown in [7]; a
third category requires only the shape and the size of the calibration object. The
proposed algorithm belongs to the last category and uses a ball as the calibration
object, as also shown in [8]: the work by Agrawal needs a perfect contour recog-
nition of a sphere filling a large part of image; this constraint is not required by
the work described in this paper.

The next section presents the algorithm details, section 3 shows some results
obtained on both synthetic and real images, and finally in section 4 conclusions
and future developments are presented.

2 Algorithm

In this section a ball geometric invariant is deduced and applied in the calibration
process to iteratively estimate pitch and roll angles of a camera orientation.

Considering the rotation matrix with respect to pitch (θ) and roll (ρ), with
no care about yaw (γ) angle

R =

 0 −cρ −sρ
−sθ sρcθ −cρcθ
cθ sρsθ −cρsθ

 (1)

where cρ, cθ, sρ and sθ stands for cos ρ, cos θ, sin ρ and sin θ respectively, and
the translation vector T = [0 0 h]T , where h is the camera height from the
ground, a mapping from 3D to 2D is performed.
By applying the standard mathematical pin-hole model and an inverse per-
spective mapping (IPM) it is possible to establish a bijective mapping between
ground plane points and image pixels.

The calibration process produces R̃. IPM points (2D) are related to the 3D
points by the following equation:

k · R̃T ·R

 X
Y

Z − h

 =

Xipm

Yipm

0− h

 (2)
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When R̃ = R then a perfect calibration is achieved and R̃T · R is an identity
matrix; hence, we have

Xipm =
h ·X
h− Z

(3)

Yipm =
h · Y
h− Z

(4)

Since camera intrinsic parameters are supposed to be known they are omitted
in equation 2.
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Fig. 1. Ball section view from an observer O

Considering spherical objects, just like the one depicted in figure 1, the fol-
lowing notations are assumed

C = [x y r]T (5)

d =
√

x2 + y2 = HV (6)

D =
√

d2 + (h− r)2 = OC (7)

where r is the ball radius.
Points A and B in figure 1 represent the points of interest: line AB delimits the
ball area visible by an observer O. In order to simplify mathematical relationships
handled in the following steps of the algorithm, line AB is approximated by the
diameter of the observed spherical object, that is with line NS. In appendix
A the correct expression of AB and the error caused by the approximation

are estimated. A proportion between triangle
∆

OCM and
∆

CNQ together with
the symmetry of N and S with respect to the ball center (C) allow to express
segments CQ and QN as

CQ =
(h− r) · r

D
=

r(h− r)√
x2 + y2 + (h− r)2

(8)

NQ =
d · r
D

=
r
√

x2 + y2√
x2 + y2 + (h− r)2

(9)
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When the road plane matches the assumption of a flat area, the IPM trans-
formation recovers the texture of the ground plane. When objects are present
on the ground plane they appear stretched in the IPM image. The spherical
shape of the ball when remapped via the IPM transformation is reshaped into
a pseudo-ellipse as shown in figure 2.

(a) (b)

Fig. 2. IPM reshaping: (a) original image of a ball in 3D world (b) the ball after
removal of the perspective effect.

Now, applying equations 3 and 4, segments CQ and QN are used to compute
the major axis of the pseudo-ellipse resulting from the IPM transformation.

NS =
2 r h D3

[(h− r)2 − r2]D2 + r2 (h− r)2
(10)

Fig. 3. Estimation error computing

It can be demonstrated that in perfect calibration scenarios NS is a geomet-
ric invariant with respect to θ and ρ.
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Equation 10 is not enough to compute the calibration parameters since it was de-
duced under the assumption of knowing the correct ρ and θ angles and distance
D. Anyway it could be used to check the achievement of the correct calibration
condition. In fact, as depicted in the block diagram of figure 3, a formal cali-
bration check can be obtained by comparing the length of the major axis of the
ellipse with the value given by equation 10. Distance evaluation is performed by
using the coordinates of the ball center in the IPM image into equations 3-4,
with Z = r, while ball detection may be obtained using the method described
in [9] and approximating the ball shape in the IPM image with an ellipse.

A critical phase of the algorithm is the update of estimated calibration pa-
rameters θ̃ and ρ̃, used in the IPM process. This is done using a steepest-descent
algorithm along quadratic error gradient.

The isolines of the error function (see figure 4) are approximatively parallel
lines even in the neighborhood of calibration point corresponding to the correct
pitch and roll; so if it is simple to identify the line intersecting the calibration
point (identified as calibration line in figure 4) by a descent gradient algorithm,
it is more complex to move along this line to identify the calibration point,
then the convergence toward the global minimum of the error function is hard.
Matrices in equation 2, under a first order approximation, become

R̃T R '

 1 0 ∆θ
0 1 −∆ρ

−∆θ ∆ρ 1

 (11)

where ∆θ = θ̃ − θ and ∆ρ = ρ̃− ρ.
Isolines are identified by constant x2

ipm + y2
ipm = d2

const; computing xipm and
yipm by the equation 2 using the approximation 11, and excluding second order
terms, the isoline equation becomes equal to

2x0z0H∆θ = 2y0z0H∆ρ− (h2(x2
0 + y2

0)− d2z2
0) (12)

where H = h2 + d2 and (x0, y0, z0)T is the real world position of the ball center.
Notice that equation 12 represents a line in ρ-θ plane with slope y0/x0. Following
the orthogonal vector (y0,−x0)T the line passing through the calibration point
can be identified.

By iteratively executing the steps described in algorithm 3, using images of
ball in different positions, many lines with different slope are found. All lines
intersect in a single point in ρ-θ plane: this is the calibration point. In order
to find the intersection point the ρ-θ plane is partitioned in accumulator cells;
the calibration point is located in the cell accumulating the maximum value. An
outline of the algorithm is shown below:

3 Results

The algorithm has been tested both with synthetic and real images (see figure
5).
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Fig. 4. Isolines of calibration error with gradients. The calibration point is indicated
with a red circle.

Algorithm 1 Calibration algorithm

Require: ρ̃0, θ̃0, ball image
1: compute error and estimate ball position (xc, yc) like in figure 3, using ρ̃k and θ̃k;

2: update (ρ̃k+1, θ̃k+1) incrementing of a step η × error in direction of (−yc, xc) ·
sign(error);

3: stop when error sign changes and trace line on cell accumulator plane; increment
k otherwise.

The mathematical correctness was tested with synthetic images. In this sce-
nario a set of rolling ball images are created assuming to use a camera with
known intrinsic and extrinsic parameters; then the images are processed by the
algorithm and a comparison between output results and expected parameters
values is done. Statistical data reported in figure 6 confirm that the underlying
idea is correct and that the algorithm can achieve a fine grade of precision: due
to the algorithm structure the maximum error is the estimation of the ρ angle.
Mean error on θ prediction is about 0.57◦ while on ρ is about 1.26◦ using square
accumulator cells of 0.5◦ per side.
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Fig. 5. Top row: images of a ball on a flat surface; Bottom row: images of a real
sequence acquired on the usual calibration grid that was used as a reference to assess
the precision of this method.
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Fig. 6. Statistic of calibration error with artificial images

Tests on sequences of real images acquired by a monocular vision system
show high sensitivity of calibration variables prediction on the accuracy of ex-
perimental setup parameters. As reported in figure 7 a small error in measuring
camera height from the ground plane can determine a significant error, especially
on real image analysis.

The analysis of the error computed on real images determines a value of h for
which the error is zero. This value of h represents the correct height estimation.
This shows that an error of about 2% in measuring an algorithm input variable
can cause significantly different prediction error.
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Fig. 7. Error on roll prediction at different camera height

4 Conclusions

The proposed algorithm has been proved to work correctly: its precision (com-
puted on synthetic images) is about 0.5◦ for the pitch angle and 1.2◦ for the
roll one as shown in section 3. It is experimentally demonstrated that 10 images
are enough to obtain a satisfactory calibration in standard conditions; a greater
number of images may not provide more precise results. The required number
of images depends anyway on the ball position, and therefore on the slope of
calibration lines obtained in different processing.

Unfortunately the result is sensibly influenced by errors in measurement of
input parameters that are considered as known (e.g. camera height, ball sizes,
camera intrinsic parameters).

Moreover uncorrect ball shape detection may cause low precision results too:
in unstructured environments, such as when no clear contrast between the cali-
bration object and the background is present, precision may be reduced.

Other weaknesses can be attributed to the stop condition of the iterative
process: due to the presence of local minima the algorithm could identify a
wrong calibration line. Moreover the assumption that the correct calibration
point stands in the accumulator cell with maximum value stored is not always
true: other heuristics, that use accumulator cells or other methods, are required
to overcome limitations on the computation of the lines intersection.

The current implementation is not real time: for each processed image the
algorithm needs to compute a number of IPM transformations, that are com-
putationally slow; the choice of the images to be used is currently made by the
user and the user can also help the ball detection by identifying at least three
points on the ball edge.

This method can be very easily extended to stereo vision system: once the
pitch and roll angles are computed for both cameras, the relative yaw between
the two cameras can be computed using only two pairs of synchronized images.
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A Appendix: Approximation of Pseudo-ellipse Major
axis

The inverse perspective mapping of line NS provides a good approximation of
the real major axis AB (see figure 1). In this section the exact formula of AB
is deduced and compared with our approximation. The position of end points
A and B with respect to the ball center is easily achieved, when the measure
of segments CT and AT is known (T is the projection of A on line MC). The
value of angle ˆCAT is equal to the difference of angles β and α (figure 1):

α = arcsin
r

D
, β = arcsin

h− r

D
(13)

Thus the relative position of point A (and its symmetric B) is achieved by
projecting radius AC on segments

CT =
r

(√
D2 − r2 (h− r)− d r

)
D2

(14)

AT =
r

(
r (h− r) + d

√
D2 − r2

)
D2

(15)

Under the assumption of flat area, IPM transformation given by equations 3 and
4 maps points A and B expressed in 3D world coordinates into pseudo-ellipse
extreme points. Finally the resulting length of major axis of pseudo-ellipse is
computed:

AB =
2 h r D4 v

(
t2 − d2

)
t2 (D4 − r4)− d2 r2 v2 − 2 r3 t d v

(16)

where t = (h− r) and v =
√

D2 − r2.

Fig. 8. Relative error due to the approximation of pseudo-ellipse axis AB with NS
with respect to the distance camera pinhole-ball center d (camera height h = 1.5 m,
ball radius r = 0.3 m).
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Note that the equation 16 is more complex and less suitable for algebraic
manipulation than the approximation 10 used in this paper. Figure 8 shows
a comparison of the two estimations of pseudo-ellipse axis with respect to the
ground distance of the ball center from the camera pinhole. The approximation
error grows as the distance D between the camera and the ball decrease; however,
even in the worst case, the error committed using NS instead of AB is negligible:
the maximum relative error is equal to 3 %.
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