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Abstract. In most image classification systems, the amount and qual-
ity of the training samples used to represent the different pattern classes
are important factors governing the recognition performance. Hence, it
is usually necessary to acquire a representative set of training samples
by acquisition of data in real-world environments. Such procedures may
require considerable efforts and furthermore often generate a training
set which is unbalanced with respect to the number of available samples
per class. In this contribution we regard classification tasks for which
each real-world training sample is derived from an ideal class representa-
tive which undergoes a geometric and photometric transformation. This
transformation depends on system-specific influencing quantities of the
image formation process such as illumination, characteristics of the sen-
sor and optical system, or camera motion. The parameters of the trans-
formation model are learned from object classes for which a large number
of real-world samples are available. For each individual real-world sample
a set of model parameters is derived by correspondingly fitting the trans-
formed ideal sample to the observed sample. The obtained probability
distribution of model parameters is used to generate synthetic sample
sets for all regarded pattern classes. This training approach is applied to
a vehicle-based vision system for traffic sign recognition. Our experimen-
tal evaluation on a large set of real-world test data demonstrates that the
classification rates obtained for classifiers trained with synthetic samples
are comparable to those obtained based on real-world training data.

1 Introduction

In many image classification systems, the size and quality of the training samples
used to represent the different training classes are important factors governing
the recognition performance. Hence, unsually a representative set of training
samples has to be acquired by acquisition of data in real-world environments.
This procedure often requires considerable efforts but does at the same time
not guarantee that each pattern class is sufficiently well represented to obtain a
classification system of high generalisation performance.

In many real-world classification tasks, models of the objects to be recog-
nised are available. Such models can be used to synthetically generate training



data for classifiers. In the domain of document image recognition, models of im-
age defects have been studied in some detail. The recognition performance of
document recognition algorithms strongly decreases when the image quality is
degraded e. g. by printing or scanning. In [1, 2] a parametric document degrada-
tion model is proposed based on the physics of printing and imaging. The local
deformations of the characters are used to determine a global transformation for
the complete document. The parameters of the degradation model are chosen to
fit a population of real image documents. The model is then used to generate
synthetic data for the training of classifiers, where the synthetic data are inferred
from an “ideal” image of the page subjected to the degradation model.

In the domain of industrial machine vision, virtual images obtained by means
of a raytracing software from a CAD model are utilised to generate samples to
train a classifier for the recognition of holes in industrial parts [7]. This method
allows the modification of spatial position, illumination, surface reflectance prop-
erties, and color. Reasonable recognition rates are obtained on real test data.

In [3] a method is presented for improving the performance of correlation-
based template matching systems. An existing set of real training shapes is
extended by virtual shapes in order to improve representational capability. An
integrated clustering and registration approach partitions the original shape sam-
ples into clusters of similar and registered shapes. Based on the determined clus-
ter parameters, realistic virtual shape samples can be generated. The method
is applied to pedestrian detection by correlation matching based on distance
transforms.

In this contribution we will regard classification problems in which a real-
world training sample is derived from an ideal class representative which under-
goes a geometric and photometric transformation due to the image formation
process. For each individual real-world sample a set of model parameters is de-
rived by correspondingly fitting the transformed ideal sample to the observed
sample. Based on one or several object classes for which a large number of sam-
ples is available, probablility distributions for the model parameters are obtained,
which are utilised to generate synthetic sample sets for all pattern classes. This
training approach will be applied to the task of traffic sign recognition.

2 Parametric modelling of real-world training data

The basic concept of the described method for synthetically generating training
samples is to consider that an observed sample My is an ideal prototype Miqeal
subjected to a parametric transformation T'(¢) such that

Mopbs = T(d))Mideal; (1)

where the vector ¢ contains the transformation parameters. The model T'(¢) may
include geometric distortions (e. g. affine or projective) due to variable viewing
direction and perspective, photometric effects such as shading or specular reflec-
tions, motion blur due to a non-stationary camera, image imperfections caused
by the point spread function of the optical system, or greylevel anomalies due



to nonlinear image sensors. A parameter vector ¢ of the transformation is de-
termined for each individual real-world training sample by minimising the mean

squared greylevel difference E (@) between the observed pattern M,ps and the
transformed ideal prototype T'(¢) Mideal according to

2

¢ = argmq%n E(({)) with E((&) = HMobs - T((ZB)Mideal (2)

We will assume that the probability distribution P(¢) of the parameter vector
¢ is independent of the pattern class as long as the characteristics of the image
acquisition system remain unchanged. Hence, the model parameter distributions
are determined based on a small number of well represented pattern classes for
which many real-world training samples are available. According to the inferred
probability distributions of the transformation parameters, a synthetic training
sample Myne, is obtained by

Msynth = T(Qb)Mideala (3)

where the parameter vector ¢ is randomly drawn from the previously determined
probability distribution P(¢). An arbitrarily large number of training samples
can now be generated readily for each desired pattern class described by its ideal
prototype Migdeal, respectively.

3 Application to the task of traffic sign recognition

3.1 Outline of the recognition system

We will examine the method described in Section 2 for generating synthetic
training samples in the context of a vehicle-based real-time vision system for the
recognition of speed limit traffic signs. In this system, a greyscale CCD camera
of 640 x 480 pixels image resolution equipped with a lens of 12 mm focal length,
yielding a horizontal viewing angle of about 40 degrees, continuously acquires
greyscale video frames of 12 bits pixel depth. The object detection stage consists
of a Hough transform [5] extracting circular shapes from each video frame. The
detected object hypotheses are tracked across time. Regions of interest (ROIs)
are cropped around the object hypotheses, scaled to a uniform size of 19 x 19
pixels, and normalised to zero mean greylevel and unit variance. A principal
component analysis (PCA) is applied to the pre-processed ROIs. It turns out
that the loss of information is negligible if only the scores on the 50 most signif-
icant principal components are regarded. This reduced set of features is used for
classifying the ROI, where a complete quadratic polynomial classifier [9] is em-
ployed. The recognition problem corresponds on the one hand to separating the
different traffic sign classes from each other, on the other hand to distinguish-
ing between the general “traffic sign” and the “garbage” class that consists of
arbitrary ROIs selected by the detection procedure not containing a traffic sign.
A track-specific class assignment can be obtained by averaging the single-image
class assignments for each track.



3.2 Geometric and photometric transformation model

The transformation model T'(¢) as defined in Section 2 now has to take into
account the camera viewpoint, the detection quality, especially the deviation
between detected and true centre of a traffic sign, and the illumination condi-
tions. The model fit is applied to the ROIs extracted by the detection stage
before scaling and intensity normalisation.

While in principle a projective transformation is necessary to describe the im-
age formation process geometrically, it is sufficient to approximate the projective
transformation by an affine transformation due to the relatively small size of the
traffic signs. This approximation reduces the number of model parameters and
increases the robustness of the model fit. The affine transformation is denoted
by A(tg,ty, S, Sy, ), where the horizontal and vertical translation parameters
t, and t, describe the accuracy at which the centre of the circular pattern has
been detected, while the scale parameters s, and s, denote the pattern size. The
rotation angle o depends on the relative orientation of the camera with respect
to the object. We found empirically that in all our data sets the skew parameter
of the affine transformation is negligible and can be set to zero.

Our photometric model is a linear approach described by a gain a¢ and an
offset b. This model is appropriate for the linear CCD sensor used in our system
but should be replaced by a nonlinear model for CMOS cameras with a loga-
rithmic or linear-logarithmic characteristic curve. More complex models which
e. g. account for non-uniform illumination across the object, shading effects or
specular reflections may be used instead, if necessary. Furthermore, we found
that our real training samples are not perceivably affected by the point spread
function (PSF) of the lens, due to the relatively small size to which the sam-
ples are normalised (cf. Section 3.3). Hence, it is not necessary here to model
the effect of the lens PSF. Possible extensions of the transformation model are
discussed in Section 3.4.

According to the described transformation model, a synthetic sample Mgynth
is derived from the class prototype Migea according to

Msynth =a [A(tau ty; Sz, Sy, O5)]\4idea1] + b. (4)

Our method to estimate the parameters of the transformation model is similar
to the approach of image registration [4], which involves the optimisation of a
quality criterion measuring the correspondence between a target image and an
observed image that undergoes a predefined transformation. In our scenario, the
target image corresponds to the class prototype Miqea1 While the observed image
Moy is taken from our traffic sign database.

In our system, the quality criterion corresponds to the mean squared greylevel
difference between the class prototype and the observed image, such that the
model parameters can be obtained according to Eq. (2). We utilise the Levenberg-
Marquardt method to determine the set of model parameters and initialise the
optimisation algorithm with the result of a grid search across the space of model
parameters.
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Fig. 1. Ideal class prototypes (upper left) and distributions of model parameters
utilised to generate the synthetic training samples (rotation angle «, horizontal and
vertical translation ¢, and t,, horizontal and vertical scale s, and sy, gain a, and off-
set b). Filled bars denote parameters inferred from class “60” and empty bars those
inferred from class “80”.

3.3 Distributions of model parameters

In order to contruct the probability distribution of the transformation param-
eters we applied the parameter estimation algorithm to a set of 5489 samples
of class “60” and 4277 samples of class “80”. These data sets do not overlap
with the training and test data regarded later on to determine the classification
performance (cf. Section 3.4). The corresponding histograms of the obtained
distributions of model parameters are shown for both classes in Fig. 1. The dis-
tribution of the rotation angle is centred around zero degrees and obtains typical
values between —4 and +4 degrees. The horizontal and vertical translations ¢,
and t, are centred around zero pixels and typically display absolute values of
less than 1 pixel. The distributions of the horizontal and vertical scaling fac-
tors s, and s, are centred around 1.1 and skewed towards larger values, where
a scaling factor of 1 corresponds to a detected diameter of the traffic sign of
19 pixels, the size to which all samples are normalised prior to classifier training
(cf. Section 3.4). The gain parameter a covers a continuum of values between
0.05 and 0.4 while the offset b displays a distribution with a narrow peak around



0.1, where these values are valid for pixel intensities normalised to the interval
between 0 and 1.

For the two sets of parameter vectors, the covariance matrix reveals that
both the scaling parameters s, and s, and the photometric parameters a and
b are not independent of each other, showing correlation coefficients between
0.4 and 0.5, respectively. All other possible pairs of model parameters display
pairwise correlation coefficients of the order 10~2 and will thus be regarded as
uncorrelated. Hence, the joint probability distribution P(¢) can be written as a
product of several one- and two-dimensional probability distributions:

P(¢) = P(tz,ty,a,sx,sy,a,b) = P(tz)P(ty)P(a)P(szaSy)P(aab)' (5)

To examine if the probability distribution of the model parameters is indepen-
dent of the pattern class, we applied the Kolmogorov-Smirnov test [6] to the two
sets of histograms derived for the “60” and the “80” pattern class, respectively.
For the joint probabilities P(ss,s,) and P(a,b) the test was carried out using
Bayes’ theorem in the form P(sg, s,) = P(sz|sy)P(sy) and P(a,b) = P(a|b)P(b).
Here, the probability distributions P(s,) and P(b) were inferred directly from
the computed set of parameter vectors, while subhistograms describing the con-
ditional probabilities P(s;|s,) and P(a|b) were constructed for 20 narrow inter-
vals of s, and b, respectively. For all model parameters, the Kolmogorov-Smirnov
test yields probabilities between 60% and 84% for the hypothesis that the ob-
served probability distributions obtained for the “60” and the “80” pattern class
are generated by the same underlying statistical law. This result justifies our
initial assumption that the probability distributions of model parameters can
be regarded as independent of the pattern class. Consequently, for each model
parameter (or pair of model parameters) the respective average probability dis-
tribution was used to generate synthetic training samples according to Eq. (3).

3.4 Comparison of classification performance

In this section we will compare the performance of a classifier trained with
real traffic sign samples to that of an identical classifier trained with traffic
sign samples synthetically generated according to Eq. (3) with model parameter
vectors ¢ randomly drawn from the probability distribution P(¢) determined in
Section 3. We regard four traffic sign classes, i. e. “30”, “60”, “80”, and “100”,
and a garbage class. The set of garbage patterns consists of real-world samples
and is identical in all described experiments. Typical training patterns, both real
and synthetically generated, are shown in Fig. 2.

We utilise a complete quadratic polynomial classifier architecture as de-
scribed in [9]. For a given input pattern, the scores on the 50 most significant
principal components of the respective training set serve as an input feature
vector to the classifier. The output of the classifier consists of K real-valued
numbers di with k =1,..., K, where K corresponds to the number of classes.
In our scenario it is thus K = 5. The training labels are chosen such that for a
training sample of class [ the desired classifier output values dy, are set to dj, = 1
for £k =1 and to di = 0 otherwise.
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Fig. 2. Real (left) and synthetically generated (right) training samples of the four
regarded traffic sign classes.
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Traffic sign Number of real Number of synthetically Number of real
training samples  generated training samples test samples

30 1578 9972 1922

60 6554 9951 9063

80 9264 9952 13673

100 9136 9962 11344
Garbage 14844 14844 23187

Table 1. Composition of the training and the test set utilised for our evaluation of
classifier performance.

In the recall phase, the decision to which class [ an input pattern is assigned
is obtained based on the expression

l= arg max ({{dk}k:L...,Kq , C- dK}) . (6)

Hence, the maximal classifier output defines the pattern class, where the output
denoting the “garbage” class K is scaled by the real-valued factor c¢. Varying
¢ yields the receiver operating characteristics (ROC) curve of the classifier, de-
picting the trade-off between the false positive rate, i. e. the fraction of garbage
patterns erroneously classified as traffic signs, and the rate of correctly recog-
nised traffic sign samples. The confusion error, denoting the fraction of traffic
sign samples assigned to the wrong traffic sign class, is independent of c. All
classification errors will be reported on the test set consisting of real samples.
The two training sets utilised in our experiments contain 26532 real and
39837 synthetically generated traffic sign samples, respectively. An identical set
of 14844 garbage samples was used in both training sets. The composition of the
training and test data is listed in detail in Table 1. The obtained ROC curves are
shown in Fig. 3. If we set ¢ = 1 in Eq. (6), we obtain false positive rates of 0.14%
and 0.08% and rates of correctly recognised traffic sign samples of 98.6% and
97.2% for the classifier trained with real and synthetically generated samples,
respectively. The confusion error amounts to 0.13% and 0.003%, respectively.
These results show that within the regarded range of very low false positive
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Fig. 3. ROC curve of the classifiers trained with real (solid curve) and synthetically
generated (dashed curve) samples.
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Fig. 4. Selection of traffic sign samples correctly but “nearly” wrongly assigned by the
classifier trained with synthetically generated samples. Classifier output is highest for
the correct class but only slightly lower for an incorrect class.

rates of less than 0.25%, the rate of correctly recognised traffic signs is only
moderately lower for the classifier trained with synthetically generated samples.

Fig. 4 shows several traffic sign samples which are correctly but “nearly”
wrongly classified by the classifier trained with synthetically generated samples.
Here, the classifier output is highest for the correct class but only a few percent
lower for an incorrect class, where we set ¢ = 1 for the class assignment defined
by Eq. (6). These samples correspond to remarkably strongly tilted, warped,
shifted, or blurred traffic signs, thus demonstrating the robustness of the classifier
obtained by the synthetic sample generation approach.

To illustrate the difference between the classifier trained with real samples
and the one trained with synthetically generated samples, typical samples taken
from the test set which are correctly classified by the classifier trained with real
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Fig. 5. Typical samples correctly classified by the classifier trained with real samples
and incorrectly classified by the classifier trained with synthetically generated samples.
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samples and at the same time incorrectly classified by the classifier trained with
synthetically generated samples are shown in Fig. 5. For the class assignment,
we set ¢ = 1 in Eq. (6). For our test set the overall number of such samples
amounts to 557. The reason for the misclassification of these traffic sign samples
is that the model does not cover the conditions encountered during image for-
mation. For several samples, the rotation angle « is outside the range taken into
account by the fit of model parameters. Other samples display a strongly non-
uniform illumination across the region of interest, which does not correspond
to the utilised photometric model. In some cases a strong blur, e. g. caused by
raindrops on the windscreen through which the images are acquired, is appar-
ent. At night or during twilight the samples may display a significant amount
of motion blur, caused by the long exposure time, or pixel noise, which is due
to the high camera gain. To take into account these samples, it would be nec-
essary to correspondingly extend the transformation model. Another reason for
misclassification is the fact that some signs cannot be inferred from the utilised
ideal class prototype since e. g. the inlay is horizontally or vertically shifted. To
account for these samples it would be necessary to introduce additional, appro-
priately chosen class prototypes. Furthermore, it may be favourable to apply a
bootstrapping stage in order to refine the inferred probability distribution of the
model parameters, involving the acquisition and evaluation of misclassified sam-
ples analogous to the traditional bootstrapping of classifiers as described e. g. in
[8] or [10].

4 Summary and conclusion

In this contribution we have described a synthetic sample generation approach
for classification tasks in which each class can be characterised by an ideal pat-
tern, and the variability of the training and test samples is essentially caused
by a geometric and photometric transformation of the ideal pattern due to the
image formation process. This transformation was assumed to depend on system-
specific influencing quantities such as illumination, characteristics of the sensor
and optical system, and viewing direction.

We have examined this training approach in detail in the context of a real-
world vehicle-based vision system for the recognition of traffic signs. Our image
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formation model consists of an affine transform to account for variations in
viewing direction and a linear photometric transform defined by a gain and an
offset parameter. The model parameters were learned from two different traffic
sign classes for which a large number of real samples are available. Based on
a Kolmogorov-Smirnov test we have shown at a high confidence level that the
empirical parameter distributions inferred from the two traffic sign classes were
generated by the same underlying statistical law.

Our experimental system evaluation on a large set of real-world test data
demonstrates that the classification rates obtained for classifiers trained with
synthetic samples are comparable to those obtained based on real training data,
thus clearly demonstrating the usefulness of the proposed approach. Typically,
misclassifications of the classifier trained with synthetically generated samples
are caused by violations of the model assumptions (e. g. non-uniform illumina-
tion, motion blur, pixel noise), by atypical model parameter values, or due to
the fact that the samples cannot be derived from the ideal class prototype.

To further increase the classification performance, future work will include
a bootstrapping stage to refine the parameter distribution and an extension
of the image formation model with respect to the above-mentioned additional
influencing quantities.
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