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Thierry Germa†, Ludovic Brèthes†, Frédéric Lerasle†‡, Thierry Simon†¶

† LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
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Abstract This article presents a key-scenario of H/R interaction for our tour-
guide robot. Given this scenario, three visual modalities, the robot deals with,
have been outlined, namely the “search of visitors” attending the exhibition, the
“proximal interaction” through the robot interface and the “guidance mission”.
The paper focuses on the two last ones which involves face recognition and visual
data fusion in a particle filtering framework. Evaluations on key-sequences in a
human centred environment show the tracker robustness to background clutter,
sporadic occlusions and group of persons. The tracker is able to cope with target
loss by detecting and re-initializing automatically thanks to the face recognition
outcome. Moreover, the multi-cues association proved to be more robust to clutter
than any of the cues individually.

1 Introduction and framework

The development of autonomous robots acting as human companions is a motivating
challenge and a considerable number of mature robotic systems have been implemented
which claim to be companions, servants or assistants (see a survey in [5]). The auton-
omy of such robots are fully oriented towards navigation in human environments and
human-robot interaction but few of them exhibit advanced visual capabilities. In this
context, we recently developed a tour-guide mobile robot whose role is to help people
attending an exhibition, and guide them by proposing either group or personalized tours.
Our robot is equipped with one Sony camera EVI-D70, one digital camera mounted on
a Directed Perception pan-tilt unit, one ELO touch-screen, a pair of loudspeakers, an
optical fiber gyroscope and wireless Ethernet (Figure 1(a)).
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Figure 1. Our mobile robot Rackham and its software architecture.

Its software architecture (Figure 1(b)) includes a supervisor which controls a dis-
tributed set of functional modules relative to perception, decision, action and interface
issues. The paper focuses on the module called ISY1 which integrates visual modalities
involving detection, recognition and tracking of persons.

Embedding visual modalities on a mobile robot dedicated to human centred envi-
ronments impose several constraints. First, on board processing power is limited and
care must be taken to design efficient algorithms dedicated to recognition/tracking of
persons. As the robot’s evolution takes place into cluttered environments subjected to
illumination changes, several hypotheses must be handled at each instant concerning
the parameters to be estimated in trackers. Robust integration of multiple informations
is required to cope with the environment and to keep locking on the targeted person
throughout the interaction session.

The literature proposes a plethora of approaches dedicated to face detection and
recognition [7]. Techniques can be effectively organized into two broad categories,
feature-based approaches and image-based approaches which uses training algorithms
without feature derivation and analysis2. Regarding 2D tracking, many paradigms in-
volving a single camera have been proposed in the literature which we shall not attempt
to review here [12]. Particle filters [4] constitute one of the most powerful framework
for tracking purpose. Their popularity stems from their simplicity, modeling flexibility
(over a wide variety of applications), and ease of combination/fusion of diverse kinds
of measurements. Nevertheless, it can be argued that data fusion using particle filters
has been fairly seldom exploited in the robotics context, for it has often been onfined to
a restricted number of visual cues [9].

The paper is organized as follows. Section 2 briefly sums up the well-known particle
filtering formalism and principles to fuse several cues in the filters. Section 3 presents
the key-scenario and the on-board visual modalities. Sections 4 and 5 focus on two
modalities involving image-based face recognition and particle filtering based person
tracking. Experiments and results are presented and discussed for each modality. Last,
section 6 summarizes our contribution and discuss future extensions.

1 Details regarding the other modules can be found in [2].
2 and so requiresa priori less on-line computational load.
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Table 1.Generic particle filtering algorithm (SIR)

2 Particle filtering algorithms for data fusion

2.1 Generic algorithm

The aim is to recursively estimate the posterior density function of the state vec-
tor xk at time k conditioned on the knowledge of past measurements [1]. The key
idea is to represent this probability density function (pdf) by a set of Gaussian ran-
dom samples with associated weights and to compute estimates based on these samples
and weights. Letz1 : k = z1, . . . , zk term the available measurements from time1

to k. At each timek, the densityp(xk|z1 : k) is depicted by a set of particlesx(i)
k

- which are samples of the state vector- affected by weightsw
(i)
k . The idea is to get
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i w
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k ) i.e. to approximate random sampling from the pdf

p(xk|z1:k) by the selection of a particle with a probability equal to its associated weight.

A generic particle filter orSIR is shown on Table (1). The particlesx(i)
k evolve

stochastically over the time, being sampled from an importance densityq(.) which aims

at adaptively exploring “relevant” areas of the state space. Their weightsw
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k are up-

dated thanks top(x
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functions, so as to guarantee the consistency of the above approximation. In order to
limit the degeneracy phenomenon, which says that after few instants all but one particle
weights tend to zero, step8 inserts a resampling process. Another solution to limit this
effect in addition to re-sampling, is the choice of a good importance density.

TheCONDENSATION algorithm is instanced from theSIR algorithm asq(xk|x
(i)
k−1, zk) =

(x
(i)
k |x

(i)
k−1). Another difference is that the re-sampling step8 is applied on every cy-

cle. Resampling by itself cannot efficiently limit the degeneracy phenomenon as the
state-space is blindly explored without any knowledge of the observations. On the other
side, theICONDENSATION algorithm [8], consider importance density(.) which

classically relates to importance functionπ(x
(i)
k |zk) defined from the current image.
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However, if a particle drawn exclusively from the image is inconsistent with its prede-
cessor from the point of view of the state dynamics, the update formula leads to a small
weight. An alternative consists in sampling the particles according the measurements,
dynamics and the prior so that, withα, β ∈ [0; 1]

q(x
(i)
k |x

(i)
k−1, zk) = απ(x

(i)
k |zk) + βp(xk|x

(i)
k−1) + (1 − α − β)p0(xk). (1)

3 Key-scenario and on-board visual modalities

Three visual modalities have been outlined which the robot must deal with (Figure 2):

1. the “search for interaction”, (Figure 2(a)) where the robot, static and left alone,
visually tracks visitors thanks to the camera mounted on its helmet, in order to
heckle them when they enter the exhibition.

2. the “proximal interaction”, (Figure 2(b)) where the interlocutors select the area
to visit through the ELO touch-screen. Here, the robot remains static and possibly
learns their faces thanks to the camera materializing its eye.

3. the “guidance mission”, (Figure 2(c)) where the robot drives the lonely visitor or
the group to the selected area, keeping the visual contact with any memberof the
guided group even if som of them can move away. The modality must enable au-
tomatic target recovery when the tracker fails or/and the targeted person reappears
after an occlusion or out-of-sight.

(a) (b) (c)

Figure 2. The three visual modalities of the Rackham robot : (a) search for interaction, (b) prox-
imal interaction, (c) guidance mission.

We focus in this paper on the two last EVI-D70 camera based modalities which involve
persons detection/recognition and tracking at mid-range H/R distances.

4 User recognition dedicated to the “proximal interaction”

This modality aims to classify facial regionsF , segmented from the input image, into
either one classCt out of the set{Ct}1≤t≤M of M tutors faces using training algo-
rithms. For detecting faces, we apply the well known window scanning technique in-
troduced by Violaet al. [11] which covers a range of±45◦ out-of plane rotation. The
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bounding boxes of faces segmented by the Viola’s detector arethen fed to the recogni-
tion process. For each classCt, we perform PCA and keep as eigenface bases the first
NB(Ct) eigenvectors accounting on average forη of the total class variance. The basis
is noted for the nextB(Ct) = {Bk(Ct), k ∈ {1, ..., NB(Ct)}}. Let F(j) be an input
image, written asnm × 1 vector, to be compared to the eigenfaces of a given classCt.
Recall that eigenspace method constructs an approximationFr,t from the input faceF
by projecting it onto basisB(Ct). F is linked to the classCt by its error norm

D(Ct|F) =
1

n × m

n×m∑

j=1

((F(j) −Fr,t(j)) − µ)2,

whereF − Fr,t is the difference image, given that|F − Fr,t| terms the DFFS3, andµ

the mean ofF − Fr,t, and its associated likelihood

L (Ct|F) = N (D(Ct|F); 0, σt)

whereσt terms the standard deviation of distances ofB(Ct) training set andN (.; µ, σ)
is a Gaussian distribution with meanµ and covarianceσ.

The aforementioned likelihoodL have to be thresholded in order to match the
input faceF with an already learnt individualCt. This thresholdτ is deduced by com-
puting likelihoodsL between test image database with their own classCt but also with
the other classes noted¬Ct. Let p(L |Ct) and p(L |¬Ct) be the probability densi-
ties which are approximated by their corresponding likelihood distributions (Figure 3).
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Figure 3.
GraphS(τ ) for threshold determination.

To specify an optimal thresholdτ , we minimize:

S(τ) = λ

∫ τ

0

p(L |Ct)dL

︸ ︷︷ ︸

St(τ)

+γ

∫ ∞

τ

p(L |¬Ct)dL

︸ ︷︷ ︸

¬St(τ)

where the weightsλ andγ respectively balance
the false rejectionSt(τ) and false acceptance
¬St(τ) results from test image database acquired
by the robot in a wide range of typical condi-
tions: illumination changes, variations in facial
orientation and expression. The choiceγ = 1

4λ

allows to give more importance to false accep-
tances than to false rejections as false acceptances cannot be accepted and so are more
important to be avoided when determining the thresholdτ .

Besides, Heseltineet al. in [6] have outlined a range of image preprocessing tech-
niques which improve the recognition accuracy. We now continue this line of investiga-
tion by applying some pertinent pre-processing techniques prior to training and testing
each face image of the database. Our face database is composed of6000 examples of
M = 10 individuals acquired by the robot in a wide range of typical conditions: illu-
mination changes, variations both in out-of plane rotation (±45◦) and expression, etc.

3 Distance From Face Space
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Distance Preproc. FAR Sensitivity η

Euclidean None 4.38% 4.46% 0.40

Equal. 5.22% 6.40% 0.80

S+C 4.58% 7.52% 0.90

DFFS None 3.17% 18.44% 0.35

Equal. 1.50% 41.28% 0.90

S+C 2.45% 10.40% 0.35

Error Norm None 1.92% 19.44% 0.35

Equal. 0.95% 48.08% 0.70

S+C 2.03% 10.06% 0.30
Table 2. Analysis of some image preprocessing methods and distance measurement. The first
column terms the distance measurement (Euclidean, DFFS, Error Norm) and the second terms
the image preprocessing (None, Histogram equalization, Smooth and Contour filter).

The database is separated into two disjoint sets : i) the training set (dedicated to PCA)
containing100 images per class, ii) the test set containing500 images per class. Each
image is cropped to a size of30 × 30 pixels.

A crossed evaluation enables the selection of both most meaningful image prepro-
cessing and distance measurement. As shown in Table 4, histogram equalization cou-
pled to our Error Norm are shown to outperform the other techniques for our database.
In fact, the sensitivity is increased of6.8% compared to the DFFS, while the False
Acceptance Rate is very low (0.95%).

For a set ofM learnt tutors (classes) noted{Ct}1≤t≤M and a detected faceF , we
can define for each classCt, the likelihoodLt = L (F , Ct) and ana priori probability
P (Ct|F) of labeling toCt







P (C∅|F) = 1 and∀l P (Ct|F) = 0 when∀l Lt < τ

P (C∅|F) = 0 and∀l P (Ct|F) = L (Ct|F)
P

p

L (Cp|F) otherwise

whereC∅ refers the void class.
To know who is present (or not) at timek, the probability of the presence of each

classCt is updated by applying the following recursive Bayesian scheme from the clas-
sifier ouputs in thep previous frames,i.e.

P (Ct|z
k
k−p) =

[

1 +
1 − P (Ct|zk)

P (Ct|zk)
.
1 − P (Ct|z

k−1
k−p)

P (Ct|z
k−1
k−p)

.
p(Ct)

1 − p(Ct)

]−1

,

where

p(Ct) =
1

M
, P (Ct|zk) =

1

B

B∑

j=1

P (Ct|Fj),

andB is the number of detected faces at timek.
Figure 4 shows some snapshots of recognized faces where the detector marked –

in red color – the detected faces but only those in green color are recognized from the
previously learnt faces.
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Figure 4. Snapshots of detected/recognized faces with associated probabilities. The target is Syl-
vain (resp. Thierry) for the two first (resp. last) frames.

5 User tracking dedicated to the “guidance mission”

5.1 Overview

In our human centred environment, more than the beforehand identified person can be
in the robot vicinity while the visual modality must lock onto the guided person as
soon as he/she enters the scene, and track him/her throughout the guidance mission.
This modality involves logically the previous face recognition process as well as the
tracking of the targeted person.

This tracker is inspired from previously developed ones detailled in [3]. We aim to
estimate at timek the state vectorxk = [uk, vk, sk]

′

which is composed of location
x

′

k = [uk, vk]
′

, and scale of the targeted person. With regard to the dynamics model
p(xk|xk−1), the image motions of observed people are difficult to characterize over
time. The state vector entries are assumed to evolve according to mutually indepen-
dent random walk models, viz.p(xk|xk−1) = N (xk;xk−1, Σ), whereN (.; µ, Σ) is a
Gaussian distribution with meanµ and covarianceΣ = diag(σ2

uσ2
v , σ2

s). Regarding the
filtering strategy, we opt for theICONDENSATION scheme depicted in section 2. Let
us characterize both importance and measurement functions involved in the tracker.

5.2 Importance and measurement functions

The importance functionπ(.) in (1) offers a mathematically principled way of directing
search according to the face verification process inspired from section 4. Taking into ac-
count the face recognition, and the probabilityP (Cl|Fj) of each face{Fj}1≤j≤B, the
importance function becomes, withB the number of detected faces andpj = (uj , vj)
the centroid coordinate of each face

π(xk|zk) =

B∑

j=1

P (Cl|Fj).N (x; pi, diag(σ2
ui

, σ2
vi

))

Let us characterize the measurement function. We consider multi-patches of distinct
color distribution related to the head and the torso4, each with its ownNbi-bin nor-
malized reference histograms models in channelc (annoted resp.hc

ref,1, hc
ref,2 for

the next). Let the unionBx =
2⋃

p=1
Bx,p for any statexk be associated with the set of

4 of the guided person.
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reference histograms{hc
ref,p : c ∈ {R, G, B}, p = 1, 2}. By assuming conditional

independence of the color measurements, the likelihoodp(zc
k|xk) becomes

p(zc
k|xk) ∝ exp

(

−
∑

c

2∑

p=1

D2(hc
x,p, h

c
ref,p)

2σ2
c

)

, (2)

provided thatD terms the Bhattacharyya distance [10] andσc the standard deviation
being determineda priori. This multi-part extension is more accurate thus avoiding the
drift, and possible subsequent loss, experienced sometimes by the single-part version.
To overcome the ROIs’ appearance changes in the video stream, the target reference
models are updated at timek from the computed estimates through a first-order filtering
processi.e.

hc
ref,k = (1 − κ).hc

ref,k−1 + κ.hc
E[xk], (3)

whereκ weights the contribution of the mean state histogramhc
E[xk] to the target model

hc
ref,k−1 and indexp has been omitted for compactness reasons. This models updating

can lead to drifts with the consequent loss of the target. To avoid such tracker fail-
ures, we also consider a shape-based likelihoodp(zs

k|xk) that depends on the sum of
the squared distances betweenNp points uniformly distributed along a head silhou-
ette template corresponding toxk and their nearest image edgesi.e. the shape-based
likelihood is given by

p(zs
k|xk) ∝ exp

(

−
D2

2σ2
s

)

, D =

Np∑

l=0

|x(l) − z(l)|,

where l indexes theNp template pointx(l) and associated closest edgez(l) in the
image. Finally, assuming the cues to be mutually independant, the unified measurement
function can then be formulated asp(zs

k, zc
k|xk) = p(zs

k|xk).p(zc
k|xk).

5.3 Implementation and evaluations

Figure 5.
The template.

The initializations of the histogramshc
ref,1, h

c
ref,2 are achieved5 ac-

cording to frames which lead toP (Cl|F) probabilities egal to one
(Figure 5). In the tracking loop, the histogram modelhc

ref,2 (torso)
is re-initialized with the previous values when the user verification is
highly confident, typicallyP (Cl|Fj) = 1. Numerical values for the
dynamical and measurement parameters used in our tracker are given
in Table 3.

Figure 6 and Figure 7 shows snapshots of two typical sequences
in our context. All regions – centred on the yellow dots – close to de-
tected faces with high recognition probabilities corresponding to the
person on the foreground are continually explored. Those – in blue
color – that do not comply with the targeted person are discarded

5 during “proximal interaction”.
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Symbol Meaning Value
(α, β) coeff. in the importance functionq(xk|xk−1, zk) (0.3, 0.6)

(σu, σv, σs) standard deviation in random walk models (10, 4,
√

0.1)
σs standard deviation in shape-based likelihoodp(zs|xk) 28
σc standard deviation in color-based likelihoodp(zc|xk) 0.03
Nbi number of color bins per channel involved inp(zc|xk) 32
κ coeff. for reference histogramshc

ref,1, h
c
ref,2 update in (3) 0.1

Table 3.Parameter values used in our upper human body tracker.

during the importance sampling step. Recall that, for large range out-of-plane face ro-
tations (> |45◦|), the proposal continues to generate pertinent hypotheses from the dy-
namic and the skin blobs detector. The green (resp. red) rectangles represent the MMSE
estimate in step7 of Table 1 with high (resp. low) confidence in the face recognition
process. The proposal generates hypotheses (yellow dots) in regions of significant face
recognition probabilities. The first scenario (Figure 6), involving sporadic target disap-

Figure 6.Tracking scenario including two persons with target’s out-of-sight. Target loss detection
and automatic re initialization.

pearance, shows that our probabilistic tracker is correctly positioned on the desired per-
son (on the background) throughout the sequence. Allthought the later disappears, the
tracker doesn’t lock onto the undesired person thanks to a low recognition likelihood.
The tracker re initializes automatically as soon as the target re-appears. The second sce-

Figure 7. Tracking scenario involving full occlusions between persons. Target recovery.

nario (Figure 7) involves occlusion of the target by another person traversing the field
of view. The combination of multiple cues based likelihood and face recognition allows
to keep track of the region of interest even after the complete occlusion.
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6 Conclusion and future works

This article presents a key-scenario of H/R interaction for our tour-guide robot. Given
this scenario, we have outlined visual modalities the robot must deal with.

Face detection and recognition based on Haar functions and eigenfaces enable the
recognition of the robot user during proximal interaction and then in the tracking loop
during the guidance mission session. Our tracker mixes face recognition and visual data
fusion in a stochastic way. Evaluations on a database sequences acquired from the robot
in a human centred environment show the tracker robustness to background clutter,
sporadic occlusions and group of persons. Image pre processing enables to improve the
face recognition process while the multi-cues associations proved to be more robust
than any of the cues individually.

Future investigations concern tests on partially occluded faces and active vision to
actively adapt the focal length with respect to the H/R distance and the current robot
status.

References

1. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-
line non-linear/non-gaussian bayesian tracking.Trans. on Signal Processing, 2(50):174–188,
2002.
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