
Exploratory Learning Structure in Artificial Cognitive
Systems?

Michael Felsberg, Johan Wiklund, Erik Jonsson, Anders Moe, Gösta Granlund
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Abstract. One major goal of the COSPAL project is to develop an artificial cognitive
system architecture with the capability of exploratory learning. Exploratory learning is a
strategy that allows to apply generalization on a conceptual level, resulting in an extension
of competences. Whereas classical learning methods aim at best possible generalization,
i.e., concluding from a number of samples of a problem class to the problem class itself,
exploration aims at applying acquired competences to a new problem class. Incremental
or online learning is an inherent requirement to perform exploratory learning.
Exploratory learning requires new theoretic tools and new algorithms. In the COSPAL
project, we mainly investigate reinforcement-type learning methods for exploratory learn-
ing and in this paper we focus on its algorithmic aspect. Learning is performed in terms
of four nested loops, where the outermost loop reflects the user-reinforcement-feedback
loop, the intermediate two loops switch between different solution modes at symbolic re-
spectively sub-symbolic level, and the innermost loop performs the acquired competences
in terms of perception-action cycles. We present a system diagram which explains this
process in more detail.
We discuss the learning strategy in terms of learning scenarios provided by the user. This
interaction between user (’teacher’) and system is a major difference to most existing
systems where the system designer places his world model into the system. We believe
that this is the key to extendable robust system behavior and successful interaction of
humans and artificial cognitive systems.
We furthermore address the issue of bootstrapping the system, and, in particular, the visual
recognition module. We give some more in-depth details about our recognition method and
how feedback from higher levels is implemented. The described system is however work in
progress and no final results are available yet. The available preliminary results that we
have achieved so far, clearly point towards a successful proof of the architecture concept.

1 Introduction

The COSPAL project1 aims at developing a new architecture for artificial cognitive systems.
This architecture combines techniques from the areas of artificial neural networks and artificial
intelligence. At all levels of the system, perception-action learning is applied for training. The
learning is incremental and exploratory, i.e., the system can continuously extends its capabili-
ties [1]. Much of the ideas of the COSPAL project are reflected in the paper [2] and many of

? This work has been supported by EC Grant IST-2003-004176 COSPAL. This paper does not represent
the opinion of the European Community, and the European Community is not responsible for any use
which may be made of its contents.

1 http://www.cospal.org
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the architectural ideas were motivated from cognitive science, see e.g. [3], Chaps. 2 and 3, and
cognitive neuroscience, see e.g. [4], Chap. 11.

Without going into technical methods developed during or applied in the project (see e.g. [5–
8]) we concentrate on system aspects of the project in this paper. First results in this direction
have been published in [9], where a simulated shape-sorter puzzle is solved by an early instance
of a COSPAL system, c.f. Fig. 1.

Fig. 1. An early version of the COSPAL system solving a simulated shape-sorter puzzle.

Fig. 2. Real 3D shape-sorter puzzle.

In the final demonstrator of the project, the COSPAL system will learn to solve a real
3D shape-sorter puzzle, c.f. Fig. 2. The important difference to existing systems accomplishing
similar tasks is that we do not model objects and the scene in terms of hard-coded structures
which are then specifically connected to the visual percepts. Instead, our system is supposed
to build models from the appearance of objects and the exploration of the environment with
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the manipulator. This starts already with learning the appearance of the own manipulator,
thus leading to the capability of controlling movements in the environment. As a second step
the system builds concepts of objects by observing the possibility to manipulate parts of the
environment. Learning to solve tasks with these acquired object models is a further step, where
largest part of the activity is moved to higher-level processing.

An essential part of the higher-level processing is the communication and interaction with
the user. This interaction supports the system in its activities of generalization, categorization,
process modeling, and goal identification. The user serves as a final controlling instance, which
shapes the system top-down. The main difference to proposed exploratory systems in the litera-
ture, see e.g. [10], is the layered architecture which allows feedback loops within the system.

2 The COSPAL Architecture

In Fig. 3 we give an overview of the COSPAL system architecture which is supposed to en-
able the above mentioned functionalities. The architecture consists of three major units, the
Perception-Action (PA) unit for low-level control cycles, the Grounding & Management (GM)
unit for managing and selecting models, and the Symbolic Processing (SP) unit for concept gen-
eration, supervision, and high-level control. Each unit has a simple control-feedback interface to
its respective neighbors. The PA unit communicates also with the Hardware-layer and the SP
unit through a User Interface with the user. The control and feedback signals are simple, in our
current implementation even binary, and their purpose is to control the processing in the different
modules. In this way, a pseudo-parallel processing of the different units becomes possible, see
Algorithm 1.

Algorithm 1 Pseudo code for main loop.
1: loop
2: HWfeedback = HW poll(HWcontrol);
3: [HWcontrol, PAfeedback] = PA poll(PAcontrol, HWfeedback);
4: [PAcontrol, GMfeedback] = GM poll(GMcontrol, PAfeedback);
5: [GMcontrol, SPfeedback] = SP poll(SPcontrol, GMfeedback);
6: SPcontrol = UI poll(SPfeedback);
7: end loop

The information exchange takes place through shared state spaces. The simplest mechanism
is between Hardware and PA unit: The Hardware unit writes the current percept into the state
space and sends the feedback signal for a modified state space. The PA unit processes the percept,
see lines 3–10 in Algorithm 2, writes an action into the state space (line 8), and sends a control
signal to make the Hardware unit perform the action (line 9). This innermost loop runs at highest
speed compared to the higher-level feedback-control loops.

The GM unit receives the state of the PA unit through the shared state space and maps it
internally to existing models. As a result, a new state is generated which is communicated to
the PA unit. The PA unit itself tries to approach the in-fed state as close as possible by running
the inner loop (lines 12–16). Whenever anything aside a simple approximation occurs (e.g. an
internally unpredicted percept), it is communicated to the GM unit (lines 5–6).

The GM unit maps states onto symbolic representations by means of short-term memory
slots and clustering methods. Whenever a state is not covered by the so-far acquired models, the
GM unit initiates a new mode of the model and communicates this information to the SP unit.
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Fig. 3. System diagram of the COSPAL architecture.
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Algorithm 2 Pseudo code for PA poll (other poll functions read accordingly).
1: PAfeedback = 0;
2: HWcontrol = 0;
3: if HWfeedback then
4: if PAmatch() then
5: PAgenFeedback();
6: PAfeedback = 1;
7: else
8: PAgenControl();
9: HWcontrol = 1;

10: end if
11: end if
12: if PAcontrol then
13: PAupdate();
14: PAgenControl();
15: HWcontrol = 1;
16: end if

Uncovered states can result from, e.g., missing object models or from incomplete process models
concerning the physical actuator. The SP unit can make use of this information to build new
concepts in the object or process domain.

The SP unit also runs the post-generalization for categorizing object models, generalizing
processes, and identifying goals. Based on these concepts, the SP unit can modify and restructure
the symbolic part of the GM unit’s memory. Whereas the GM unit relates sub-symbolic to simple
symbolic information, the SP unit relates symbols to each other and to symbolic tasks. The action
sequences within symbolic tasks are also learned in the SP unit, based on perceived successful
sequences. Again, this information is sent through the shared state space, and the control line
just indicates the presence of new states.

Finally, the SP unit communicates to the user through the state space of the UI. The control
and feedback signals here correspond to events in ordinary GUI programming, see Fig. 4 for the
COSPAL GUI. Overall, the system uses its fourfold hierarchy of feedback-control loops in order
to accomplish tasks of different complexity in a robust way and in order to allow continuous
learning over the whole lifetime.

The separation of functionalities into three modules is motivated by the hierarchy of in-
formation and processes: sub-symbolic, first-order symbolic, and relations between symbols. In
particular the learning that takes places in all three modules requires the distinction between
these levels, as symbolic relations and mappings from sub-symbolic states to symbols must be
trained hierarchically.

Since the initial system does not have any working models in its units, the output has to be
generated according to some innate principle. The simplest thing to do is to generate random
outputs and to perceive what the lower-level part returns. This mechanism has already been
applied successfully at all levels, but some feedback or control from a higher level is always
required. This feedback can be hard-wired, e.g., by defining a correct prediction of a state as
success, typically applied at low levels of the system. The feedback might also be provided by
propagating user feedback through the higher levels.

One key idea behind the nested structure of the COSPAL system are the feedback loops: each
unit communicates with its respective neighbored units through feedback and control signals. We
believe that it is a necessity to move the feedback and control to the respective neighbored levels
in order to avoid pre-modelling of capabilities and representation. In a way, a single unit is not
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Fig. 4. Screenshot of the COSPAL graphical user interface.

aware of its own performance, but the whole system is – up to the highest level where a user is
required to give feedback. Of course the user feedback at highest level could also be replaced by
learning from ’experience’, but we consider this as providing the same information to the system
in just another modality.

Without the interaction with the user, the system will never be shaped to solve any problem.
It is the user who specifies the task and provides the environment to the system: The user defines
the learning scenario. It is also the user who assesses the system’s performance at the highest
level and reacts by providing further or different learning scenarios. In this way, the user helps
the system building its models by providing learning problems at appropriate levels of difficulty.

3 Bootstrapping

Besides the continuous incremental learning mentioned above, the system is bootstrapped in the
beginning in order to get it quicker into a useful state. Although this distinction between two
different modes may seem unnatural, this is also the case for biological systems. It is useful to
replace extensive learning efforts on sparsely occurring events by intensive learning of massive
occurrences in the beginning of model acquisition.

There is a fundamental difference between batch mode learning systems, i.e., a system which
is either in learning mode or in operation mode, and systems with bootstrapping. In the former
case, the system is exposed to two different states of the external world: in learning mode,
typically stimuli and responses are given (supervised learning), whereas in operational mode
only the stimuli are given, and hence, no further improvement of the system is possible. In the
latter case, multiple stimuli and multiple feedback is present all the time, and it is the internal
system state which distinguishes the two modes.

During the bootstrapping, the system follows a certain innate scheme for acquiring knowledge.
We will illustrate this further below for the example of object recognition. This is motivated by
certain behavioral schemes innate to, e.g., babies and small children: They try to reach what ever
is in their range and they try to sense everything with their lips and tongue. One could postulate
that this is a method to explore the dimensions of objects, textures, and shapes.
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After bootstrapping, the system is controlled by its own supervisor part, established in the
symbolic processing. This has the effect that the systems appears to behave purpose driven.
Only if processing fails at any level, the particular level undergoes a further learning step similar
to those during the bootstrapping: It acquires a new solution to the problem by some strategy.
The main difference to bootstrapping is that the system returns into a purpose driven behavior
immediately after the new competence has been acquired.

In a more sophisticated scenario, one could think about setting only single levels or modules
of levels into bootstrap mode. As a consequence, each module could stop bootstrapping indepen-
dently. The overall system behavior seems to gradually change from innate schematic to purpose
driven likewise in a biological system. This is however not realized in the current system design.

The technical implementation of bootstrapping and incremental learning differs between the
three levels. For the symbolic level, bootstrapping is very much a symbol grounding problem,
cf. [11, 12]. The mechanisms applied therein are graph-based clustering techniques for percept-
action couples, whereas actions are to be understood on a symbolic level. The percept represen-
tation used in the mentioned method is a pictorial one, as more generic ones were not available
at that time.

To ground percept symbols on image features in a generic way is one task of the medium
system layer. The technical implementation of its bootstrapping is based on advanced classifica-
tion techniques in terms of binary classifiers, which are based on equivalences of pairs of objects.
This technique is based on [13] and allows to identify subspaces of the input-space which remain
equivalent for different training samples with certain common properties, e.g., color or shape.

At the lowest level of the system, bootstrapping might be performed as supervised or unsu-
pervised learning, c.f. [14, 15] for servoing and clustering. Going beyond (unsupervised) feature
clustering is difficult as the semantic correspondence between different learning instances is not
obvious. In particular for bootstrapping visual recognition this leads to a number of dilemmas:
How shall we learn to recognize something if we do not even know whether we see the same thing
or a different one? How shall we generalize what we have learned if we do not know which parts of
the input space are equivalent according to a yet unknown symbol? How can we avoid unwanted
clustering of inputs if they are indistinguishable in the feature domain (example: extract a white
ball lying on a white line)?

4 Bootstrapping and Learning in the PA Part: New Techniques

The visual recognition module is based on the representation technique described in [16]. As it
has been shown in [8] that this class or representations are equivalent to a sampled kernel density
estimator. The obvious way to compare such elements in this representation is in terms of the
cross entropy or Kullback-Leibler divergence:

D(p,q) =
∑

j

pj log
pj

qj
, (1)

where p and q are the representations of a prototype and a query, respectively. The visual
recognition module selects a number of image features, computes their sampled density estimates,
and compares those with a number of prototype densities.

This recognition technique results in receiver operator characteristics which are more or less
perfect for simple scenarios as the COIL-100 database (12 training views, 60 test views). The
integral under the ROC curve is one (rounded to two digits) [17]. The interesting property of the
method is that even in case of missing information and cluttered background nearly the same
recognition rates can be achieved. In Fig. 5, a typical training view and a similar test view are
shown.
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Fig. 5. Left: training view (without background), right: test view (with cluttered background)

’Without background’ for the training view is realized as a uniform density over the whole
background area. As a result, the background in the test view does not influence the value of the
cross entropy (1). But how do we achieve the necessary foreground-background segmentation if we
do not know anything about the object? Exactly this issue is addressed by the perception-action
learning paradigm. If we assume that the system pushes around objects with its manipulator, it
becomes trivial to segment the object (moving part) against the background (static part).

One problem in this context is the manipulator itself: it might occlude or disturb the feature
extraction and thus the prototype generation process. Currently we solve this issue by moving
the manipulator out of the field of view. A more elegant and in particular much faster way is
to make the recognition blind for the manipulator. This can be done in a similar way as with
the background before. We first train the recognition of the manipulator which gives uniform
distributions for the background. Then we virtually subtract the density of the manipulator
from the current density estimate in order to become blind for the manipulator. This method
has however not been fully evaluated yet.

In the way described so far, we can recognize previously seen objects at a known location. Two
problems remain, where only the first one is related to bootstrapping: How do we detect candidate
regions for the recognition? And: How can we generalize to previously unseen combinations of
object properties? Both questions are relevant in the context of incremental learning and feedback
mechanisms.

Detection of recognition candidates has been suggested earlier in terms of interest point
clusters, cf. [9]. The actual scheme for generating the interest maps can certainly be improved,
but the starting point will always be: take the current view and generate a map of candidates.
The candidates have different weights and those with the largest weights are chosen first. If those
candidates do not lead to significant recognitions, the interest map is modified according to the
distance to already tested points. This scheme can be used during bootstrapping and during
incremental learning. In the latter case, the upper levels can even actively influence the map in
a coarse way: they provide a prior to the detection result.

Even more interesting is the problem of generalization during incremental learning. Given
the following situation: we have bootstrapped a red round object, a green round object, a red
cube, and a yellow cube. Is it possible to use the bootstrapped recognition system to recognize,
e.g., a green cube - without knowing that color lives in a certain feature subspace and shape in
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another one? Preliminary results seem to confirm this, if we make use of the earlier mentioned
binary classifier at the medium layer.

The idea is as follows: During bootstrapping, the binary classifier is trained according to the
output of the visual recognition, i.e., recognition of the first four objects. If the binary classifier
is trained, it will notice that object 1 and 2 have something in common, object 3 and 4, and
object 1 and 3. In this way, the binary classifier learns to split the features into two subspaces
which humans would call color and shape. The problem is now that binary classifiers can only
be trained on very limited feature spaces, whereas the described visual recognition uses some
thousand of dimensions.

Assuming that the reduced feature set for the classificator is obtained by a linear projection
of the full feature set: f = PF, a reasonable thing to do is to find the subspace division in the full
feature space from the subspace division in the reduced feature set. A minimum norm approach
makes sense here, as it tries to avoid large variations and lead to equally filled subspaces. If sf is
the subspace of the reduced feature space, we minimize the norm of the subspace projections for
all full features Fk under the constraint that the projection of the subspace equals the subspace
of the projection:

min
S

∑
k

‖SFk‖2 s.t. sP = PS . (2)

The subspace projection SF can then be used to verify separate properties of objects, e.g. color
or shape. The advantage of this method is that the separation of features has not been modeled
into the system, such that it works for arbitrary selections of features without changing the code.
To allow successful recognition, the features need to be sufficiently rich of course.

Once that the object recognition works even on subspace level, i.e., different properties can be
synthesized in arbitrary combinations, they can be directly attached to symbolic representations.
The mapping between subspace property prototypes and sets of symbols can be bootstrapped
directly, without modifying single symbols and properties individually. This becomes possible
by correspondence-free association of symbols to subspaces by means of a learning technique
proposed in [18]. This results in an efficient scheme for bootstrapping direct links to the symbolic
level.

5 Ongoing Work and Outlook

It should be pointed out, that we are still integrating some of the mentioned methods into the
algorithmic frame corresponding to the structure in Fig. 3. This means that the reported results
are obtained by single modules or off-line exchange of data and not yet in a closed system.
Although we are constantly improving modules, not all code has yet reached the same level as
it is described here and future publications including exhaustive experiments will follow.

Future work will concentrate on the partially open topics named in the previous section, as
there are:

– Virtually removing the manipulator
– Improving the candidate detection
– Evaluating the subspace projection method

New results will be available soon and are going to be presented on a workshop in June, held
with the SCIA conference.
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