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Abstract. In this paper we propose an efficient algorithm to align the
face in real time, based on Active Appearance Model (AAM) in 2.5D.
The main objective is to make a robust, rapid and memory efficient
application suitable for embedded systems, so they could align the pose
rapidly by using less memory. Classical AAM is a high memory consumer
algorithm, consequently transfer of this stored memory in an embedded
system makes it a time consuming algorithm as well. Our 2.5D AAM
is generated by taking 3D landmarks from frontal and profile view and
2D texture only from frontal view of the face image. Moreover we pro-
pose Nelder Mead Simplex technique for face search. It does not require
large memory, thus becoming suitable for embedded systems by elimi-
nating the excess memory and access time requirements. We illustrate
2.5D AAM optimized by Simplex for pose estimation and test it on three
databases: M2VTS, synthetic images and webcam images. Results vali-
date our combination of simplex and AAM in 2.5D.

1 Introduction

Our team works in Human Machine Interface (HMI) for embedded systems and
specially in face analysis i.e. face alignment, recognition, feature extraction and
expression detection. Not only a solution to this interface is required but at the
same time that solution should be efficient and robust. Talking about efficiency
and robustness, the constraints of time and memory are also to be tackled spe-
cially when face analysis methods are implemented on embedded HMI systems
(e.g. Mobile phone, game console etc).

Generally global face analysis and synthesis system is composed of three
phases (see figure 1). Initially, the face is detected. Followed by face alignment
with respect to the coordinates. Finally this aligned face can be used for several
man machine interactions. Our main focus is on the second phase of the global
face analysis system i.e. face alignment.

Many methods have been proposed in this respect. [1] presented the idea
of Active Appearance Model (AAM) in which shape and textural information
is included into the model and regression matrices (RM) are used as a search
algorithm. RM are build during the learning phase of AAM taking into the
account all the faces of the given database. Convergence occurs by varying model
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Fig. 1. Face Analysis System

coefficients and minimizing the error between model and an object. Since AAM
was first introduced by regression matrix therefore we call it as a classical AAM.
We have chosen this AAM but without its classical search algorithm with which
it becomes high memory consumer and eventually makes it a bad choice for our
embedded system applications. This RM also weakens generalization property
of our proposed system since it inhibits only those faces of the database from
which it has been created. [2] performed pose prediction by using 3 AAMs, one
frontal view and two profile views, which is not efficient enough for our system
because of three times increase in data transfer between processor and memory.

Now we present the work of other teams dealing with the problem of memory
and robustness. In [3] simple gradient descent method was used as a search
algorithm for face tracking by AAM. [4] used another fitting algorithm, inverse
compositional image alignment algorithm [5], which is again an extension of the
gradient descent method. In our work we restrict those algorithms (Gradient
descent) which require the computation of function derivatives. Moreover it is
more complex and slow for our system.

[6] applied 3D model of head, obtained from a 3D scanner, to track the face
in a stream of a video by varying appearance parameters obtained by AAM. Al-
though they used Nelder-Mead Simplex as an optimization technique but their
model generation procedure is quite cumbersome. They applied Mutual Infor-
mation and Correlation Ratio as similarity metrics.

Our main objective is to align the face efficiently in real time by consum-
ing less storage memory. Three dimension alignment of face required 6 pose
parameters i.e. three translational parameters t,, t,, scale and three rotational
parameters Oz, Oy, 0z. To achieve this objective we propose 2.5D Active Ap-
pearance Model by using simplex as a search algorithm. In training phase 2.5D
AAM is constructed by combination of i) 3D landmarks taken from frontal and
profile view of a face image ii) texture of only frontal view of a face image. In
testing phase pose is estimated by simplex method, implemented in such a way,
to reduce the requirement of high memory and time. These two aspects of our
application make the embedded systems to have less memory and save time to
transfer the data between processor and memory. Along with that it do not re-
quire a-priori knowledge of the learning phase as in the case of RM, again saving



the time in learning phase. In addition to this, absence of this RM give us the
ability of generalization as well.

Remaining of the paper is organized as follow. Section 2 explains the creation
of 2.5D Active Appearance Model. Section 3 explains how the face is aligned by
2.5D AAM using Nelder Mead Simplex method. Section 4 illustrates the results
obtained during experiments. And section 5 concludes the paper.

2 2.5D Active Appearance Model

21 AAM

In 2D AAM, the model contains both shape and texture variations. In the train-
ing phase (see figure 2(a)) landmarks are marked on all the faces of the database
either manually or automatically. Shape model is obtained by calculating mean
of these shapes followed by PCA. This mean shape is used to extract the frontal
view of all the faces of the database to acquire mean texture. Texture model
is obtained by performing PCA. By combining above two models, appearance
model is obtained. By varying the parameters of this appearance model one can
reshape the model to any face. Matching is performed by projecting the model
on the image and reducing the error by varying the model parameters. Conver-

gence occurs after a number of iterations and match is obtained as shown in
figure 2(b).

Model Error
Placement Calculation
(a) Training Phase (b) Testing Phase

Fig. 2. AAM Training and Testing Phases

2.2 2.5D AAM

Our aim is to build 2.5D AAM using only the frontal view image. 2.5D AAM is
somewhat different and it requires little more steps than 2D AAM, which are.

3D Landmarks. In our 2.5D AAM 68 points are marked manually as in 2D
AAM as shown in figure 3. Although profile view of the person is used to make
a 3D shape but only the frontal view image is taken for the texture database. If
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there are N number of images in the database then the vector representation of
these shapes is

SN = [T1, %2, - T68, Y1, Y2, Y68, 215 22, ---268) (1)
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Fig. 3. Landmark Placement

Shape Model and Parameters. All the landmarks obtained in the previous
step are resized and aligned in three dimension using procrustes analysis [7, 8].
Mean of these 3D landmarks is calculated which is called mean shape. Prin-
cipal Component Analysis (PCA) is performed on these shapes to have shape
parameters with 95% of the variation stored in them.

Si:'§+¢s*bs (2)

where s; is the synthesized shape, 5 is mean shape, ¢ are eigen vectors obtained
during PCA and b, are shape parameters.

Texture Model and Parameters. 3D Mean shape obtained in the previous
step is used to extract and warp (based on the Delaunay triangulation) the
frontal views of all the face images. Only two dimensions of the mean shape is
used to get 2D frontal view textures. This is why we call our model as 2.5D
AAM, since it is composed of landmarks represented in 3D domain but only 2D
texture is warped on this shape to acquire 2.5D model. Mean of these texture is
calculated. Followed by another PCA to acquire texture parameters with 95%
of the variation stored in these parameters.

gizg""d)g*bg (3)

where g; is the synthesized texture, g is mean texture, ¢, are eigen vectors
obtained during PCA and b, are texture parameters.

Proceedings of the 5™ International Conference on Computer Vision Systems (ICVS 2007)
Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8
This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de




Appearance Model and Parameters. Both of the above parameters are
combined by concatenation of by and b,. And a final PCA is performed to have
the appearance parameters.

b= [bsby]T,b =% c (4)

where ¢. are the eigen vectors obtained by retaining 95% of the variation. And
¢ is the matrix of the appearance parameters, which are used to obtain shape
and texture of each face of the database.

Pose Parameters. 2.5D Model can be translated as well as rotated with the
help of translational and rotational parameters. Therefore we have three angles
of rotation and three translational parameters named as pose parameters P.

P = [Qw,9y7ez,tw,ty,scale]T (5)

where 6, correspond to the face rotating around x axis (shaking head up and
down), 6, to the face rotating around y axis (semi profile views) and 6, to the
face rotating around z axis. ¢, t, are the offset values from the supposed origin
and scale is the magnification of the model. Figure 4 shows the face rotating
around y axis making left and right semi profile views.

Fig. 4. Snapshots of rotating 2.5D AAM

2.5D Active Appearance Model. In order to search a face by 2.5D AAM,
it is necessary to acquire mean shape and mean texture along with the limits of
appearance and pose parameters. The model is rendered by the following steps:

— 3D mean shape is rotated and translated to the desired value of pose param-
eters.

— Mean texture is overlaid on this rotated shape.

— Appearance parameters are varied to fine tune the shape as well as texture
to obtain each individual of the database.

In this way we can have frontal, half profile and all the remaining views of
each individual of the database as shown in figure 4. In the testing phase this
model is projected on the unknown image and face is searched.

Generalization comes from the fact that while varying the appearance param-
eters we can have such faces that do not exist in the database. In fact this face
is the mixture of the faces of the given database. Therefore controlled variation
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of the appearance parameters can create new faces. This generality increases as
the number of faces in the given database increases.

3 2.5D AAM Pose Estimation

3.1 Image Similarity Metrics

Along with optimization technique of simplex, similarity metrics also plays an
important role in matching. In each iteration similarity between model and an
object is calculated and residual error value is returned to simplex to re-evaluate
the parameters of the model to get a closer match. In order to choose the best
similarity metrics for our application we have performed experiments on three
known methods i) Euclidean Distance (EUC) defined as a distance between two
vectors, ii) Correlation Coefficient and iii) Mutual Information.

Correlation Coefficient (CC). It is a linear relationship between two random
variables. It is obtained by dividing the covariance of the two variables by the
product of their standard deviations.

>y (ai —a)(bi —b)
Yoy (ag —a@)2y /00 (bi — b)?

where a; and b; are the gray levels of the images to be matched for errors. a and
b are the means of these images and n is the total number of pixels in an image.

(6)
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Mutual Information (MI). It is more complex and slow as compare to EUC
and CC. It is calculated in terms of individual and joint entropy of the two
images to be matched [6].

MI = E(hy) + E(hy) = E(ha,) (7)
E(h) == _ h(x:)logh(z;) (8)

where E(h,) and E(h,y) are individual and joint entropy whereas h, and hq
are 1D and 2D histograms respectively.

3.2 Simplex

Nelder Mead Simplex algorithm [9] is used to optimize the pose parameters
to estimate the pose. As discussed earlier there are six pose parameters of
which three are rotational and three are translational. The target is to find
out the best possible values of these parameters giving minimum error value
between model and the face. Limits are applied on these parameters and seven
(numberofparameters+ 1) possible solutions are chosen randomly within these
limits. Simplex starts the face search and calculates the best values of pose



parameters corresponding to minimum error obtained. Simplex works in an it-
erative manner to search for minimum values. In each iteration parameters are
modified (reflected, expanded, contracted or shrunk [9]) based on the previous
value of error. It converges when no further good solutions are possible. Fixed
number of these iterations are applied for each simplex executions. This num-
ber is either fixed by number of convergences or processing time. In return it
provides seven solutions among them first is the best possible.

Simplex initialization is in random and to avoid divergence, limits of parame-
ters are introduced, which forces it to search minimum value within these limits.
It is obvious that as we narrow down our limits to the best solution, we have
better results. All the limits are narrow enough for one simplex except for profile
angle. Profile angle spans 90 degree which is more for one simplex, thus profile
angle value is divided in M parts each is optimized by one simplex, resulting
in M number of simplex executions. As the number of simplex executions in-
creases as the system gets more sluggish. Therefore M is to be chosen carefully
to achieve a good trade-off between accuracy and time.

3.3 Pose Estimation

In our application pose is estimated by rendering 2.5D AAM by initializing
parameters and projecting on an unaligned face image. Main objective is to
calculate the values of six pose parameters. Limits has been defined on these
parameters so as to avoid the occlusion of the face. Steps of the pose estimation
are as follow:

1. First of all test image is loaded, along with the location of center of gravity
(COG) of the unknown face.

2. 2.5D mean and frontal view AAM is build with zero appearance parameters

¢ = 0 and zero pose parameters P = ( for the initialization. COG values are

used to initialize only translational parameters.

Pose is estimated considering limits as tabulated in table 1.

4. Profile angle spans 90 degrees (left semi profile to right semi profile) which
is more for one simplex execution to search a face.

5. We divide these 90 degrees in M parts, each of 9—]\2 degrees, in return we have
M simplex executions instead of one.

6. Best pose parameters of each M simplex executions are stored.

7. Best value among these M simplex executions is selected to estimate the
pose.

@

4 Experiments

4.1 Selection of Similarity Metrics

Before conducting the experiments it is necessary to observe the behavior of
the error obtained while estimating the pose. Three types of error behavior is



Table 1. Limits of pose parameters

Pose Parameters Min. Value Max. Value

Y axis rotation  -45 degree 45 degree
X axis rotation -5 degree 5 degree

7 axis rotation -5 degree 5 degree

X axis translation -20 pixels 20 pixels
Y axis translation -10 pixels 10 pixels
Scale -0.05 0.05

logged while rotating the model on frontal view of the face image of M2VTS [10]
database. Median value is taken upon performing the above error calculations 20
times for each similarity metrics. Medians of these 20 iterations of each error are
calculated followed by their normalization between 0 and 1 to be able to compare
with each other. Figure 5 shows the results corresponding to errors of CC, EUC
and MI. In the context of our pose estimation application we observed that CC
and EUC behavior is almost the same while MI curve has more noise near the
global minimum. Moreover it is more complex and slow for our application. We
choose EUC method for our experiments since it is less complex as well as fast
as compared to CC.

4.2 Best value of M

In our application we divide profile angle in M parts, resulting in M simplex
executions. More the simplex executions more the result would be accurate but
at the same time system becomes time consuming. To analyze the behavior of
M, we should have exact value of difference between estimated and actual profile
angles. In this case only synthetic image can provide us the exact value of the
profile angles. Therefore it is tracked by varying M from 1 to 9 and mean of the
error between actual and estimated profile angle is calculated for each value of
M. The results shown in figure 6 eventually enlighten the behavior of error with
respect to M. After analyzing we choose M equal to 5 which gives 3.5 degrees
of mean error of profile angle.

4.3 Results

The proposed algorithm (2.5D AAM, Simplex and EUC as a similarity metrics)
was tested on three database images M2VTS, synthetic image and webcam im-
ages. Ten experiments were performed on each database image in order to obtain
the median values of results. Performing median of these values serves as a low
pass filter, which rejects divergent results caused by inappropriate initializations
of simplex.

M2VTS Images. Figure 7 shows the result of pose estimation of M2VTS
image with mean 2.5D AAM. All of the images from left half to frontal and to
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right half profile are tracked and their respective profile angles are logged. It
shows that pose is estimated correctly.

Synthetic Images. Figure 8 shows the result of pose estimation of synthetic
image with 2.5D AAM. In the case of synthetic image we can have the exact
value of the profile angle, therefore we can compare pose estimation results with
the exact values of profile angle. Linear curve shows actual profile angle values.
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Fig. 7. Pose estimation of M2VTS image Fig. 8. Pose estimation of synthetic image

Webcam Images. Figure 9 shows the curves of pose estimation of two webcam
images with mean 2.5D AAM. In fact the purpose of introducing these images
is to proof the generalization of 2.5D AAM. The fabrication of 2.5D AAM do
not involve these images therefore they are unknown to the system. Although
the curves are noisy but still the pose is well estimated.

5 Conclusions

We have presented Active Appearance Model in 2.5 dimensions. 2.5D AAM is
constructed by the combination of 3D landmarks taken from frontal and profile
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Fig. 9. Pose estimation of webcam images

view and 2D texture of only frontal view. Pose is estimated by simplex method,
implemented in such a way, to reduce the requirements of high memory and time.
Euclidean Distance (EUC) is used as a similarity metrics. Several experiments
have been performed on different databases to verify robustness and rapidness
for face alignment. Only one texture of frontal view and 68 landmarks makes
the 2.5D AAM very light in memory consumption. Our proposition of 2.5D
AAM and simplex is well adapted for embedded systems as it is not only less
memory consumer but also saves time to transfer the data between processor
and memory.
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