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Abstract. In this paper we propose and evaluate a recognition approach
to individual animal identification in patterned species based on video
filmed in widely unconstrained, natural habitats. The key issue addressed
is a distortion robust detection and comparison of unique, deforming
camouflage markings as found in a wide range of species. We propose a
coarse-to-fine methodology specifically extending and combining vision
techniques in a three-stage approach, that is 1) a rapid, coarse key-view
detection based on patch appearance, 2) pose estimation and 3D model
fitting using a (pre-computed) dynamic Feature Prediction Tree (FPT)
followed by bundle adjustment and 3) texture back-projection, extraction
of unique phase singularities and final encoding using an extended vari-
ant of Shape Contexts [2]. Distortion-robust animal identification is then
achieved by solving associated bipartite graph matching tasks for pairs
of templates. Experimental results indicate a performance of GAR 92%
at FAR 10−1% for a prototype trained on non-occluded African penguins
operating in a real-world animal colony of thousands. Independently pro-
ducing time-stamped identification data, the system marks a first step
towards a partial automation of biological field observations that may
permit for a truly non-intrusive behavioural as well as conservational
analysis of population dynamics.

1 Introduction

Visual identification exploiting biometric individuality in humans attracted sig-
nificant research interest during the last decade. However, current biometric
recognition systems employing unique entities such as the human iris [7, 19],
fingerprints [18, 17] or facial features [14, 22], are still highly dependent on artifi-
cially controlled acquisition conditions and some form of normalised, cooperative
user behaviour [11]. Hence, visual biometrics almost exclusively focus on the hu-
man subject despite a high potential for an application to wildlife.
As formalised by Murray [15], a large variety of animal species carry perma-

nent camouflage markings on their coats. Such highly unique (but lifelong stable)
patterns, mainly compositions of stripes and spots, originate from Reaction-
Diffusion systems originally described by Turing [21]. Well-known examples in-
clude ‘eye-spots’ on butterflies and stripes on zebras. Due to quasi-chaotic for-
mation processes, coat markings often differ significantly from individual to in-
dividual while following a wider theme typical for a species (see Fig. 1).
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Fig. 1. (Top Left) Superimposition of phase singularities on coat patterns of several

species. (Top Right) Individually unique spot patterns of African penguins. (Bot-

tom) Conceptual outline of our proposed recognition pipeline and its components.

We propose, inspired by minutae representations of fingerprints, to compactly
capture this individuality by spatial configurations of inherent phase singular-
ities, e.g. landmark sets of spot centres or line bifurcations/endings. To utilise
these sets as identifiers, a robust detection of animals and their pose is crucial
since coat patterns (and any landmark set on them) undergo significant, non-
linear deformation during motion altering the spatial configuration of features.

Various methodologies have been suggested to limit the impact of deforma-
tion: distortion avoidance, as suggested by Dorai et al. [8], aims at selecting a
minimally deformed measurement. The strategy relies on both the availability
of multiple measurements and means of rating the severeness of distortion1.

Building on a different strategy, Shape Contexts, introduced by Belongie
et al. [2], provide a rich, deformation robust representation of landmark sets,
e.g. shapes, through spatial histograms that emphasise local coherence. How-
ever, the discrete nature of the histograms used requires larger landmark sets.

If a nominal pattern form can be recovered, distortion may be removed using
image warping techniques2 before matching. Here, the difficulty lies in an appro-
priate definition of a ‘nominal representation’. Such techniques require dense,
regular feature maps and are, in contrast to Shape Contexts, not easily applica-
ble to sets of landmark data only (such as spot patterns of penguins). Moreover,
all published systems dealing with fingerprint or iris consider 2D patterns only.
In contrast, face recognition systems consider highly view-point dependent intra-

1 Assuming the availability of dense time-series data, it has been proposed to utilise
flow models [5] to determine the extent of deformation.

2 For instance, Senior et al. [18] use equal spacing between ridge curves in fingerprints
to normalise patterns. Ross et al. [17] imply a smooth nature of the distortion field
and model deformation employing thin plate splines anchored at ridge curves.
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class variation as well as natural variance in face geometry and appearance;
the detection of face location and pose becomes a task in its own right. Viola
and Jones [23] suggested to utilise AdaBoost to train Haar-like classifiers for
finding image patches containing faces. A recent extension [9] organises similar
edge based classifiers in decision trees to pose a rigid model aligned with the
face. Huang, Heisele and Blanz [10] propose a component-based detection system
trained on 3D models rendered in variable lighting and created as mixtures of
both geometry and texture generated from 3D face scans. In contrast, several
attempts in the graphics community aim at describing deformation by physically
accurate models that simulate the interaction of underlying structure [1, 6]. Such
models are rarely applicable for detection since they rely on knowledge about
the forces involved or on inverse kinematic calculations.
However, the key requirement for the use of surface-model approaches is

the establishment of correspondences between model and image on the basis
of local (or global) features. To achieve this, current systems mainly use wide
baseline matching employing, for instance, SIFT [13] or patch classification via
Randomised Trees [16]. As we found, these methods (based on local appearance
alone) perform poorly detecting features on deforming species with individually
varying patterning. We therefore turned towards modelling the flexible spatial
relationship of features. Ozuysal et al. [16] model rigid objects by using a single
underlying 3D model or, generalising the method, an ellipsoid model to relate
features. Recently Carneiro and Lowe [4] proposed the use of flexible models op-
erating on pre-matched SIFT [13] features for the discovery of correspondences.
For our system, as conceptually outlined in Fig. 1, we model the spatial

relationship of features on the basis of representative 2D projections observed
from 3D animation of a deformable model. The system operates in a coarse-to-
fine manner combining and extending previous work: we initially train Haar-like
classifiers [23] on the entire object at key views of interest centred at a key fea-
ture (see Fig. 2). This detector (coupled with a tracking technique as outlined
in [3]) yields a coarse estimate of the initial feature location and object size.
On this basis we progressively extract other correspondences where the search is
guided by predictions that spatially constrain the search. The method resembles
ideas in Carneiro and Lowe [4] but differs conceptually by 1) actually guiding the
feature extraction and by 2) incorporating 3D-visibility information. We further-
more employ adaptive classifiers as local descriptors that capture deformation
invariant features as inspired by [16]. This establishes a middle ground between
component detection [10] and low-level, local feature extraction such as SIFT
[13]. We utilise Haar-like features for modelling the appearance as described in
Sec. 3.1. We model the spatial coherence of patches by a Feature Prediction Tree
as outlined in Sec. 3.2. In both cases we utilise 3D animation to train the model.

2 Learning from Animated 3D Model

In order to create training information, a deformable 3D modelM withK surface
features F = {f1, ..., fK} is animated through T animation steps, that is M =
{m1, ...,mT } wheremt represents the model pose at step t. We aim to learn both
1) the (changing) appearance of feature patches and 2) the structure of their
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Fig. 2. Detection for Key-Features. (Top) frontal example detections; (Bottom Left)

Receiver Operating Characteristic (ROC) of key-feature detector; (Bottom Centre)

superimposition of matching probability (chest centre) using Eq. 2; (Bottom Right)

positive samples from the training set.

spatial configuration. To limit the data set, we sample a sparse set of surface
features that are chosen by detecting local interest points3 on the appearance
model under orthogonal viewing conditions.
The model is observed through H different virtual cameras placed at equally

distributed angles around the model (see Fig. 3) to register different view as-
pects. During animation the cameras generate a set of L = HT model projec-
tions. Hence, this yields a K × L matrix M = [ m1 ... mL ] of 2D projections
ml, each represented by a column vector [xt,h,f1 ... xt,h,fK ]

T = [x1,f1 ... xL,fK ]
T

for pairs (t ∈ T, h ∈ H) containing object-centered 2D vertex coordinates. We
will refer to each ml as a formation describing a specific feature configuration.
In addition, the projected image patch around each feature fk (using multiple
textures to capture species-variability) is stored creating an image set Dfk per
feature (see Fig. 3) for the training of local appearance classifiers as described in
Sec. 3.1. To preserve visibility information for each ml a set vl = {vl,f1 , ..., vl,fK}
is constructed holding values vl,fk ∈ {0, 1} that indicate visibility of feature fk.

3 Probabilistic Model of Feature Correspondence

From this given training data we aim to establish a set of consistent feature corre-
spondences, that is an injective mapping E from model features F to features F̂
found in a novel image I. The mapping can be expressed as a correspondence set
E = {(fk, f̂c(k))|1 ≤ k ≤ K} = {e1, ..., eK} where c(k) is a correspondence func-
tion that maps indices. Let P (ωfk |̂fj) represent the probability of k = c(j), that
is the estimated degree of association between a measured feature f̂j centred at

3 The choice of the detector is application dependent. For the penguin application, we
simply utilise a subset of G = {x | thresh > | 5 [Itex(x) ∗G(x)]| } where G(x) is a
Gaussian kernel.
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an interest point location xf̂j ∈ I and the class ωfk representing model feature fk.
Assuming statistical independence, we aim to approximate this probability by
an evaluation of both the similarity of appearance and the positional validity
yielding: P (ωfk |̂fj) = PA(ωfk |̂fj)PF̄ (ωfk |̂fj) (1)

where PA reflects a view-point independent ‘similarity of feature appearance’
and PF̄ describes the probability of ‘the feature being in a valid place’ relative
to some subset of already detected features F̄ ⊂ F̂\{f̂j}. We now turn to an
explicit modelling of these two essential measures.

3.1 Appearance Model using Haar-like Descriptors

Aiming for robust local appearance description, we (again) employ Haar-like fea-
ture classifiers [23]. We utilise AdaBoost to train weak Haar-like classifiers for
each model feature fk describing a feature class ωfk based on positive data sets
Dfk and the negative set Dneg ∪Df1 ∪ ...Dfj 6=k ... ∪DfK respectively

4. Following
ideas described in [20], we modify the AdaBoost classifier to yield estimates for
matching probabilities instead of binary classifications:

PA(ωfk |̂f j) = maxs∈S

eH̄s

eH̄s + e−H̄s
H̄s =

N∑

i=1

[αi ∙ hi(s, xf̂j )] (2)

where hi(s, xf̂j ) represents the i
th weak Haar-like classifier with associated weight αi

calculated relative to image position xf̂j using all scales s ∈ S.

3.2 Probabilistic Spatial Prediction Model

We model the degree of validity of feature positions by multivariate Gaussian
distributions around rigid predictions. The parameters of interest are the mul-
tivariate variance Σj,F̄ and the mean μj,F̄ . We aim to estimate the latter by a

known feature triple {f̄m, f̄n, f̄o} ⊆ F̄ , that serves as reference system, and an
affine parameter vector āj providing the relative location within this system. The
triple indices and the associated vector form an affine predictor. During off-line
training, for pairs (F̄ , fk) the indices of the most stably performing feature triple
as well as the associated affine displacement ā are learned on the bases of the
related visible formation set, that is M̄ = {ml ∈ M |∀f̄k∈F̄ : vl,fc−1(k) = 1}. To
find this best affine predictor we solve the linear system:
al,j(o,m, n) = (xl,f

c−1(j)
−xl,f

c−1(o)
) ∙ [ (xl,f

c−1(m)
−xl,f

c−1(o)
) (xl,f

c−1(n)
−xl,f

c−1(o)
)]
−1
(3)

for al,j in all formations ml ∈ M̄ for chosen three-element subsets. We confine the

tests to subsets of the N neighbouring features closest to {f̂j} since there would

be up to

(
3

|F̄ |

)

HT linear systems to solve for a complete affine stability search.

The predictor (āj , c
−1(m), c−1(n), c−1(o)) performing with smallest normalised

variance, that is min(||μāj ||
−1 ∙ |Σj |), is chosen and the parameters for Gaussian

approximation are estimated as:

Σj =
1

|M̄|
∙
∑

l | ml∈M̄

(
al,j − μāj

)2
; μāj =

1

|M̄|
∙
∑

l | ml∈M̄

al,j (4)

4 Dneg represents a set of randomly sampled patches of input images not containing
instances of the feature.
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Fig. 3. (Top Left) Our appearance model recruits small, overlapping and localised

patch-components as features. Also shown are 5 out of L = 5, 000 sample patches (per

feature) observed during animation used to train a Haar-like appearance classifier for

the feature location. (Top Centre) Camera arrangement used (where H = 5, K = 48,

T = 1, 000) and samples of poses occurring during training animation. (Top Right)

One of the texture maps used for animation. (Bottom Left) Visualisation of conceptual

aspects of FPT’s. (Bottom Right) Examples of correct detection results and a false

detection (leftmost image) after performing bundle adjustment.

μj,F̄ = xf̄o + āj ∙
[
(xf̄m − xf̄o) (xf̄m − xf̄o)

]
(5)

Note that the linear systems are solved in the training stage while only the po-
sitional estimation is dynamically calculated based on actual locations of the
features in the chosen set {f̄m, f̄n, f̄o}. This division decouples the object struc-
ture (that is feature coherence expressed in the feature choice, average feature
position and variance) from the measurements of feature locations. At the be-
ginning of detection, when no three features are available as a reference system,
we utilise the image reference system scaled by the initial detection size.

3.3 Tree Construction

The posterior matching probability of a certain formation m in the image I
given a certain feature set F̂ can be approximated by a product of probabilities
of feature match P (m|F̂ ) ∝

∏
k P (ωfk |̂f j). We aim to detect all possible such

formations covered during training. The core idea of a Feature Prediction Tree is
to interweave the detection process for different formations to dynamically order
the evaluation sequence trying to calculate probabilities for highly predictable
features first based on knowledge about 1) the learned object structure and
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2) the previously identified features F̄ . The structural component is organised
in a (large) tree where each node represents a stage of the recognition process
and holds associations to features. Figure 3 provides a sketch of an FPT with
annotations of its components.
The root, the initial detection stage, is represented by the initial key feature.

Edges branching from a node n describes the minimal set of the most robust pre-
dictions of unmeasured features F

N
= {fk} that together increase the informa-

tion about the presence of all hypothesised formations given the features on the
path from n to the root. Robustness of a prediction depends on the co-visibility
probability of the feature given F̄ , that is PV is(fk) = |M̄ ∩ {ml ∈ M |vl,fk =
1}|/|M̄|, and the success rates of the classifiers for appearance and position. The
performance of the Haar-like classifiers as given in Eq.(2) is approximated by
the true positive rate PApp(fk) of the associated binary Haar-like classifiers eval-
uated at the constant false positive rate in the working area. The performance of
a spatial predictor is approximated by its variance PPos(fk) = α/|Σk| where α is
a weighting factor. For each node the set F

N
is determined in a greedy procedure

progressively adding fnext = argmaxfk /∈(F̄∪FN )[PV is(fk) ∙ PApp(fk) ∙ PPos(fk)] until
(∀ml∈M̄∃fk∈FN : vl,fk = 1) or a leaf is reached when M̄ contains only formations
with the same visible features given F̄ . For each fk a branch and a node is estab-
lished and fk as well as all features fj /∈ (F̄ ∪ FN ) that share the same visibility
given F̄ , that is (∀ml∈M̄ : vl,fk = vl,fj ), are associated with the node. For all
associated features, in sequence of their robustness, the prediction parameters
detailed in Section 3.2 are calculated and stored. The procedure is repeated for
all nodes without branches until all nodes have branches or are leaves.
During detection, we apply a depth-first search with backtracking until the

partially evaluated posterior probability reaches either an acceptance threshold
or drops below a rejection threshold. Dynamic Programming is used to aid the
search since subproblems overlap, e.g. different paths share common features.
Successful matching naturally yields a correspondence set E between all visible
model and image features as well as a set of possible formations. This estimate
is then refined using bundle adjustment initialised on the dense polygonal model
and its view parameters associated with the formations found in the leaf (see
Figure 3, right). The approach is not robust to severe occlusion. However, this
fits the task since biometric identification requires the entity (spots) to be visible.

4 Biometric Identification

We apply our system to find and identify individual African penguins (Sphenis-
cus demersus) in video sequences. The identification is based on the chest pattern
of typically 5 to 25 stable black spots. We utilise the technique described to locate
penguins in the video sequences and derive the correspondences between model
and image features to pose a polygonal model into the scene. Back-projection
then generates a texture map of the visible skin parts that is widely normalised
for global deformation. Segmentation using adaptive thresholding is employed
to extract the unique configuration of spot locations on the penguin chest. How-
ever, the spot pattern still suffers from non-linear local distortion of the skin.
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4.1 Robust Matching using Distribution Contexts

To address this problem, we employ a deformation robust matching technique:
Shape Contexts [2] provide the means to incorporate local coherence into match-
ing schemes. The method partitions the measurement space with respect to a
reference landmark by building polar histograms of feature positions with in-
creasing bin size further away from the reference. Since the technique is of sta-
tistical nature it performs well for large landmark sets even under distortion.
For sparse sets it suffers from ‘jumping’ features close to bin borders. We pro-
pose an extension, that we refer to as Distribution Context, replacing feature
landmarks by feature distributions describing their positional uncertainty rela-
tive to the reference spot. This addresses the problem of bin jumps by creating
dense feature distributions. Fig. 4 shows a visualisation of two polar divisions
from one Distribution Context (note that as many histograms as landmarks are
constructed). We derive the form of these distributions from statistical mea-
surements on penguin patterns under motion. Based on 20 sample clips of 5s
length we find that the relative variance of feature pairs is correlated with
their distance (see Fig. 4). We approximate the relationship fitting an expo-
nential function σxi(x) = e

(α∙||x−xi||) − β where the parameters were found to
be α = 1.07 ∙ 10−2 and β = 0.97. This model describes the data with a corre-
lation coefficient of R = 0.976. Using this finding we model a single landmark

distribution by a Gaussian fμ,xi(x) = N ∙ e
− 1

2e(α∙||x−xi||)−β
(x−μ)T (x−μ)

that is ra-
dially distorted relative to the reference where N is a numerically pre-calculated
normalisation factor. The matching of two distribution contexts employs the
Hungarian method [12] to solve the assignment problem (identical to Shape
Contexts). The sum of the associated matching costs is used as distance metric
in pattern space. The definition of a threshold value for maximal distance be-
tween two patterns of the same individual allows the comparison of two patterns.

4.2 A Real-World Application

A static camera with a resolution of 1280x856 pixels was used for image acqui-
sition at a penguin colony on Robben Island, South Africa. In order to estimate
system performance 1,000 chest patterns of 114 individuals were used. The pat-
terns were manually identified to build a ground truth. Each pattern was then
compared to all other patterns. Various threshold values d in pattern space were
applied to generate the Receiver Operating Characteristic (ROC) curve for the
identification process as presented in Fig. 4. For comparison, we evaluated two
other techniques, that is Shape Contexts [2] and landmark matching using the
mean squared error of the closest matching feature pairs where the two patterns
were aligned using Procrustes algorithm. The evaluation shows that distribu-
tion contexts slightly outperform Shape Contexts over the entire spectrum of
the characteristic. At the working area at a false positive rate of 10−1 % distri-
bution contexts perform with about 92 % genuine acceptance rate, that is 2 %
better than Shape Contexts. The technique allows a machinised construction of
identification time-lines (for example see Fig. 4). This can be a first step towards
a partial automation of biological field observations that may permit for a non-
intrusive behavioural and conservational analysis of population dynamics.
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Fig. 4. (Top Left) Original detection image, normalised penguin spot pattern and two
histograms (out of 15, one for each centre spot) from its Distribution Context. (Top
Right) Receiver Operating Characteristic for individual penguin identification, com-
parison of techniques. (Middle Left) Variance of spot distance plotted against spot
distance. (Middle Right) Time-line exsample (4min) of identification events with static
camera in penguin colony. (Bottom Left) Various examples of identified African pen-
guins with detected spot pattern superimposed. (Bottom Right) Application scenario
on Robben Island: note the camera (middle) observing penguins returning to colony.

Acknowledgements: This work was made possible by funding of ‘The Leverhulme
Trust’ and support of the ‘Earthwatch Institute’. We would like to thank Peter J.
Barham and Innes C. Cuthill for their project related guidance, inspirational discus-
sions and advice. We would also like to thank Les G. Underhill, Rob Crawford and
Mario Leshoro for their practical help and support during the realisation of field tests.

References

1. A. Aubel and D. Thalmann. Realistic deformation of human body shapes. In
Computer Animation and Simulation, pages 125–135, 2000.

2. S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape
matching and object recognition. In Neural Information Processing Systems, pages
831–837, 2000.

3. T. Burghardt and J. Calic. Analysing animal behaviour in wildlife videos using
face detection and tracking. IEE Proceedings Vision, Image and Signal Processing,
153(3):305–312, 2006.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



4. G. Carneiro and D. Lowe. Sparse flexible models of local features. In European
Conference on Computer Vision, number 3, pages 29–43, 2006.

5. G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates
using large deformation kinematics. IEEE Transactions on Image Processing,
5(10):1435–1447, 1996.

6. S. Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations of soft
tissues for surgery simulation. IEEE Transactions on Visualization and Computer
Graphics, 5:62–73, 1999.

7. J. Daugman. How iris recognition works. IEEE Transactions on Circuits and
Systems for Video Technology, 14(1):21–30, 2004.

8. C. Dorai, N. Ratha, and R.M. Bolle. Detecting dynamic behavior in compressed
fingerprint videos: distortion. In Computer Vision and Pattern Recognition, pages
320–326, 2000.

9. M. Everingham and A. Zisserman. Identifying individuals in video by combining
generative and discriminative head models. In Proc. International Conference on
Computer Vision, pages 1103–1110, October 2005.

10. J. Huang, B. Heisele, and V. Blanz. Component based face recognition with 3d
morphable models. In Audio-Video-Based Biometric Person Authentication, pages
27–34, 2003.

11. A. K. Jain, S. Pankanti, S. Prabhakar, L. Hong, A. Ross, and J. L. Wayman.
Biometrics: A grand challenge. volume 2, pages 935–942, 2004.

12. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2, pages pp. 83–97, 1955.

13. D. G. Lowe. Object recognition from local scale-invariant features. In Proc. Inter-
national Conference on Computer Vision, pages 1150–1157, 1999.

14. K. Messer et al. Face verification competition on the xm2vts database. In Inter-
national Conference on Audio and Video Based Biometric Person Authentication,
pages 964–974, 2003.

15. J. D. Murray. Mathematical Biology 2 - Spatial Models and Biomedical Applica-
tions. Springer-Verlag Berlin Heidelberg, 3rd edition, 2003. ISBN 0-387-95228-4.

16. M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua. Feature harvesting for tracking-
by-detection. In European Conference on Computer Vision, pages 592–605, 2006.

17. A. Ross, S.C. Dass, and A.K. Jain. Fingerprint warping using ridge curve cor-
respondences. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(1):19–30, 2006.

18. A. Senior and R. Bolle. Improved fingerprint matching by distortion removal. IEIC
Transactions on Information and Systems, 8(7):825–831, 2001.

19. C. Tisse, L. Martin, L. Torres, and M. Robert. Person identification technique
using human iris recognition. In Vision Interface, pages 294–299, 2002.

20. Z. Tu, X. Chen, A.L. Yuille, and S.C. Zhu. Image parsing: Unifying segmentation,
detection, and recognition. In International Conference on Computer Vision, pages
18–25, 2003.

21. A. M. Turing. The chemical basis of morphogenesis. In Philosophical Transactions
of the Royal Society of London, volume 237 of B. The Royal Society, 1952.

22. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neu-
roscience, 3(1):71–86, 1991.

23. P. Viola and M. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):137–154, 2004.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de


