
Open-Ended Inferene of Relational Representations inthe COSPAL Pereption-Ation ArhitetureDavid Windridge, Josef KittlerCentre for Vision, Speeh and Signal ProessingDept. of Eletroni & Eletrial Engineering, University of Surrey, Guildford, UKTel: +44 1483 876043, d.windridge�eim.surrey.a.ukAbstrat. The COSPAL arhiteture for autonomous arti�al ogni-tion utilises inremental pereption-ation learning in order to generatehierarhially-grounded abstrat representations of an agent's environ-ment on the basis of its ation apabilities. We here give an overview ofthe top-level relational module of this arhiteture.The �rst stage of the proess hene involves the appliation of ILP to at-tempted ation outomes in order to determine the set of generalisedrule protools governing ations within the agent's environment (ini-tially de�ned via an a priori low-level representation). In the seondstage, imposing ertain onstraints on legitimate �rst-order logi indu-tion permits a ompat reparameterisation of the perept spae suhthat novel pereptual-apabilities are always orrelated with novel a-tion apabilites. We thereby de�ne a meaningful empirial riterion forpereptual inferene.Novel pereptual apabilities are of a higher abstrat order than the a pri-ori environment representation, allowing more sophistiated exploratoryation to be taken. Gathering of further exploratory data for rule indu-tion hene takes plae in an iterative yle. Appliation of this mehanismwithin a simulated 'shape-sorter' puzzle environment indiates that thisapproah signi�antly aelerates learning of the orret environmentmodel.1 Introdution1.1 Bootstrapped pereptual representations in the COSPALognitive arhitetureThe aim of EU COSPAL1 projet is to reate an open-ended ognitive arhite-ture for real-world implementation via inremental pereption-ation learning[3℄. Pereption-ation learning hene seeks to address the frame-related diÆul-ties2 assoiated with autonomous ognitive agents by the expedient of reating1 COSPAL is an aronym for 'COgnitive Systems using Pereption-Ation Learning'.2 The frame problem [7℄ refers to the open-endedness of logial prediation assoiatedwith typial real-world ations. This is aused prinipally by the domain desriptionbeing very muh riher than that of the ation domain.
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pereptual representations only when they are apable of being di�erentiated bythe agent's ations.When, as in the COSPAL arhiteture, learning is open-ended (suh thatation ompetenes an be built-up in a hierarhial fashion), the adoption ofa pereption-ation paradigm ensures that the inreasingly abstrat and sym-boli representations at the top-level of the hierarhy are always grounded inmeaningful ations at the lower-level of the hierarhy. We thus spontaneouslyinfer new pereptual ategories in a manner that simultaneously allows for theontinuous re�nement of models in the objetive domain, in a way that wouldbe paradoxial or ill-founded for non pereption-ation learners3. We term thisognitive bootstrapping [1,2℄.Ideally, we would like the higher-levels of representation to inlude formalstrutural entities as well as the stohasti labels assoiated with the existingCOSPAL visual and motor-ontrol systems. In this way, the system an inferappropriate pereptual entities in omplex rule-based environments (for exam-ple, a game of hess), by autonomously alibrating the lower-levels of visualrepresentation (suh that, for instane, individual hess-squares and piees arepreferentially segmented out) on the basis of their signi�ane for the inferredhigh-level ation protools (the rules of hess, in this ase).Our goal in the urrent paper is hene to implement an Indutive LogiProgramming (ILP) module within the COSPAL arhiteture onsistent withthe ognitive bootstrapping ideal. This will involve an iterative three-stage pro-ess involving: (1) Indution of the logial rules underlying ation feasibility,(2) Remapping of the pereptual variables to best represent the lass of legit-imate ations, (3) Ative exploration of the environment on the basis of thisrepresentation.We will show that the gradual iterative re�ning of the perept spae so as tobest represent feasible ations inherently aelerates the proess of learning theenvironment protools, giving the randomised exploratory ations an inreas-ingly 'intentional' harater.1.2 Experimental Instantiation Within the Shape-SorterEnvironmentThe test domain of the COSPAL ILPmodule is thus a simulated three-dimensional'shape-sorter' puzzle. Here, variously shaped piees an be positioned freelyaround the puzzle's surfae and also plaed within unique holes orrespond-ing to their shape; piees an also be staked. The ative agent embodied withinthis environment is a roboti gripper arm apable of positioning itself anywherein the volume above the board and shapes.The ations (representing the a priori motor spae) initially available tothe simulated COSPAL agent are thus limited to positional translations of the3 Without the pereption-ation relationship objet-model errors an simply be sub-sumed by the pereptual inferene.
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gripping arm, whih is assumed to perform a 'grasping' ation at the start-ing position of the attempted translation and a 'releasing' ation at the �nalposition of the proposed translation (we thus, at this stage, eliminate the pos-sibility of objet rotation). Beause of the pereption-ation equivalene, this apriori motor-spae orresponds exatly to the a priori pereptual domain, whihis hene haraterised as a disretised �nite three-dimensional Cartesian spaeequipped with topologial adjaeny relations. Eah disrete volumetri positionis assoiate with a partiular label (denoting oupany by a partiular lass ofobjet, though this onept is not yet representable by the agent).Ations are onsequently initially spei�ed by the six-tuple instrution:'move(x1; y1; z1; x2; y2; z2)' indiating a transition from position (x1; y1; z1)to position (x2; y2; z2), both de�ned by three-dimensional vetors.The environment is initially modelled by the injetive funtional relationshipbetween the Cartesian spae (X;Y; Z) and the set of labels fLg. We will laterseek to model the environment on the basis of a�ordane; the ability of the agentto permute this funtional relationship. To do this we need to appropriately gen-eralise the legitimate ations within this environment. Ation legitimay is henedetermined in the most general and least environmentally-spei� terms: by thesuess or failure of the ation to do what was intended. Thus, we assess thelegitimay of the ation 'move(x1; y1; z1; x2; y2; z2)' on the basis of its stability(the �nal state must not undergo further hanges not indued by the agent) andits utility (the �nal state must be di�erent than the initial state). The movementfrom (x1; y1; z1) to (x2; y2; z2) must hene involve the gripping and releasingof an objet at a loation in whih it is supported. This an only happen ifan (unenumbered) objet exists at (x1; y1; z1) and a free position exists at(x2; y2; z2), with a supporting surfae immediately below it - at (x2; y2; z2� 1)on the assumption of a shape 'depth' of 1.A supporting surfae is thus any one of the following entities: the puzzle, anyother shape, a hole that does not math the moved shape, or a hole that doesmath the shape, but has a di�erent orientation to that of the shape itself. (Po-sitions are disretised so that partial overlaps between objet and holes are notpermitted4). The subset of the (jx1j�jy1j�jz1j)2 possible transitions within thea priori motor-spae that are legitimately performable are thus approximatelyjshapesj � jx2j � jy2j in number.Given that the a priori perept lasses existing prior to ognitive bootstrap-ping are positional oupany labels, where positional relations are determinedby ertain prior adjaeny and topology relations, we also require a orrespond-ing a priori struture apable of determining relations between the individuallabels. These take the form of lass and relationship prediates apable of dis-tinguishing: positional oupany labels, shape-labels, hole-labels, hole-shape la-bel orrespondenes, and orientation labels (these are hene in addition to the4 Obviously, a real physial shape-sorter puzzle would be more omplex than simpli�edrepresentation, permitting, for instane stable, but vertially-tilted states for themoved objet; we are here attempting to ensure that legitimate transitions form atransparently losed lass (a group, mathematially).
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(x; y; z) adjaeny labels assoiated with positional prediates). In speifyingthese prediates, it is important to appreiate that the prior pereptual stru-tures have as yet no ation-determined meaning; they at merely as label allo-ation funtions.In implementing ognitive bootstrapping in this domain our aim is, �rstly,the determination of the legitimate transition rules (ie, the objet model), andseondly the remapping of the a priori perept states suh that only the legitimateation state transitions are pereived. That is, we would like to �nd a ompatbut maximally desriptive perept spae in whih all states are aessible byperformable ations. We shall demonstrate that this maximally desriptive spaeis always of a higher-level of abstration than the a priori spae.In alternating between pereptual remapping and exploratory ation arriedout in terms of the inferred perepts we shall hene also implement a partiularinstane of ative learning [4℄, and, as suh, will expet to ahieve signi�antlyfaster learning within the objetive domain (whih is to say, faster onvergeneon the legitimate ation states).We therefore now turn to a desription of the implementation of the simulatedexperimental environment in logial terms, and follow this with a desription ofthe use of indutive logi programming (ILP) for onept generalisation, allow-ing the remapping of existing perepts into a more ompat spae in whih allproposed ations are assumed to be ahievable.2 First Order Logial Implementation of the Shape-SorterIt is evident that an inferene system apable both of proposing novel exploratoryations and of evaluating their outomes must be one of generalisation. More-over, this generalisation is, at its highest level, inherently relational given thenature of the shape-sorter environment: stohasti generalisation is then limitedto the lowest level of the pereptual hierarhy. For the present purposes, weshall assume ideal stohasti generalisation suh that there is no ambiguity (andno redundany) amongst the base pereptual lasses (shape, position, et). Ourproblem is thus purely one of rule inferene5.Spei�ally, sine the shape-sorter puzzle is protool-based, our problem isthe inferene of ation rules that are given in terms of general variables, for whiha partiular label onstitutes a variable instantiation. We are hene impliitlyonsidering a �rst-order logi system, in whih a given move represents a logialproposition that may or may not be ful�llable in terms of the logial axiomsdesribing the shape-sorter environment. This strongly suggests an implemen-tation of the shape-sorter within an indutive environment suh as PROLOG,within whih the negation or aÆrmation of movement propositions with respetto the environment axioms is representable as a goal.5 In the full implementation, rule inferene is permitted to diretly inuene thestohasti lustering of the lower hierarhial layer, suh as by unifying lusterswith idential logial relations in the manner of [5℄ (though the mehanism outlinedin [5℄ does not undertake a omparable pereptual remapping phase).
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We hene set out to de�ne the shape-sorter puzzle in logial, rather physialterms, suh that it beomes possible to later use Indutive Logi Programming toinfer the logial axioms de�ning the system given only a few spei� exploratoryinstanes. This, in essene, is to de�ne a semanti parser for the shape-sorterpuzzle in PROLOG.2.1 PROLOG ImplementationWe thus de�ne the shape-sorter protool in terms of the a priori ognitiveategories given earlier, whih we shall render as the PROLOG prediates:free position(X;Y; Z), is hole(X), hole shape math(A;B), orientation(X;O)and position(A;X; Y; Z) (where A and B represent entity labels, X , Y and Zrepresent ordinal position labels, and O is an angle label). We also introduean elementary topologial relation appliable to eah of three ordinates indi-ating diretional adjaeny: in x(X1; X2), in y(Y 1; Y 2) and in z(Z1; Z2),suh that, for example, in x(X1; X2) is only satis�ed when X2 = X1 + 1.(Angles and positions are hene both �nite and disrete, being limited to 10and 120 = jX j � jY j � jZj= 3� 8� 5 possibilities, respetively). Again, we em-phasise that these prediates are labelled so as to assist omprehension; thereare as yet no ation-determined meaning assoiated with the terms. Critially,these base perept ategories have the potential to delineate higher-level oneptssuh as the spae above an objet A via onatenation, ie: position(A;X; Y; Z),in z(Z;Z1), free position(X;Y; Z1) (though this is has not yet been madeexpliit: this will be the aim of pereptual remapping). The logial rules thusorrespond to the physial rules of the shape-sorter environment in an broadlyintuitive fashion. The rules governing move legitimay in this simpli�ed shape-sorter are thus rendered in PROLOG as the three-lause sequene:move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in z(Z1; Z3); free position(X1; Y 1; Z3);free position(X2; Y 2; Z2); in z(Z4; Z2); position(B;X2; Y 2; Z4); not(hole shape math(A;B)); not(A == B):move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); inz(Z1; Z3); free position(X1; Y 1; Z3);free position(X2; Y 2; Z2); in z(Z4; Z2); position(B;X2; Y 2; Z4); is hole(B); hole shape math(A; B);orientation(A; O1); orientation(B; O2); not(O1 == O2):move(X1; Y 1; Z1; X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); inz(Z1; Z3); free position(X1; Y 1; Z3);position(B;X2; Y 2; Z2); in z(Z2; Z3); free position(X2; Y 2; Z3); is hole(B); hole shape math(A; B);orientation(A; O1); orientation(B; O2); O1 == O2:(with ommas separating simultaneously satis�ed logial onstraint onditions,and distint lauses separating alternative logial satisfation onstraints.)3 Indutive Logi Programming in the Shape-SorterDomainWe now wish to onstrut a system apable of inferring a rule set suh as theabove from spei� examples of exploratory moves along with their (positive or
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negative) outomes. Sine we are in the domain of �rst-order logi, we are onse-quently interested in Indutive Logi Programming [6℄. A natural implementationof ILP for our appliation is Muggleton's PROGOL. PROGOL operates by on-struting the most spei� lause of the �rst of the set of positive examples fromwhih we wish to onstrut the general rule. The most spei� lause is the on-atenation of all true prediation appliable to this positive example, seletedfrom the range of possible 'body prediate' mode delarations. Prediates arethen randomly pruned from this lause giving rise to a more generalised set oflauses whih are tested both for their onsisteny with the negative examplesand their ompression of the positive examples. The most e�etive of these isthen seleted as bakground knowledge and used to remove redundant positiveexamples, after whih the proess begins again with the �rst of the remainingpositive examples.Thus, we intend to perform exploratory ations arising from ognitive boot-strapping within the simulated environment de�ned by the PROLOG rules givenin setion 2.1, attempting inferene of them via PROGOL. For the urrentdemonstrative purposes, rather than onsidering temporal sequenes or multiplerandom instantiations of a single simple puzzle on�guration, we shall, in obtain-ing our test data, opt rather to perform single ations on a �xed, but large andvaried, puzzle on�guration (slightly simplifying the form of mode delarations).4 Ative Learning Via Cognitive Bootstrapping in theRelational DomainIn seeking to simultaneously infer optimal objet and perept models we shallhene implement a system of iterative alternation between the exploratory andthe environmental (objet-model) inferene phases. Cognitive bootstrapping thenstands as an intermediary between these two phases. Spei�ally, it takes the ur-rent environmental inferene (that is, the attempted inferene via PROGOL ofthe shape-sorter PROLOG rules when given the umulative outomes of all ofthe previous exploratory moves), and seeks to rede�ne the perept spae in amanner appropriate to this newly-assumed environmental model. This remappedperept spae then, in turn, suggests a new set of exploratory moves (in e�et,the perept remapping re-parameterises the environmental model), thereby test-ing both the environmental and pereptual hypotheses at the same time, whileoveroming the potential paradox involved in their interdependent de�nitions.We now look at exatly how this pereptual remapping is ahieved:4.1 Remapping of the Perept SpaeSuppose that the appliation of PROGOL to the umulative exploratory datahas given rise to the inferene of a partially aurate rule. The following is atypial example of the sort of rule infered after four legitimate exploratory ationexamples have been ollated (along with very many more negative exploratoryation examples):
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move(X1; Y 1; Z1;X2; Y 2; Z2) : �position(A;X1; Y 1; Z1); in z(Z3; Z2); position(B;X2; Y 2; Z3):(This orresponds to the onstraint that an objet must be plaed on top ofanother objet)6.We notie that this rule has introdued three new variables (A, B and Z3)beyond the existing six variables (X1; Y 1; Z1; X2; Y 2; and Z2) used to spe-ify the a priori motor-spae. As a onsequene of the nature of PROGOL, theprediate terms within the body of the above lause must delared with a spe-i� input/output struture. For instane, the body mode delaration for the'position' prediate is : �modeb(1; position(�entity;+xint;+yint;+zint)), in-diating that for a given 3-D positional input, a single entity lass objet labelis given as output. However, we have so spei�ed the mode delarations thatthere is also a 'position' prediate body mode delaration given with exatlyopposite input/output struture (whih an, if neessary, be di�erentiated viaan appropriate suÆx). Furthermore, in onsequene of the partiular design ofthe shape-sorter logial protools, this symmetry is ommon to all of the predi-ates that have both an input and an output (so that, for instane, an oupiedposition always de�nes a unique shape label, while a given shape label alwaysde�nes a unique position). We have thus adopted a stritly funtional de�nitionof prediation within the mode delarations.This will not neessarily be the ase within general logial environments;however, in the ase of physial environments suh as the shape-sorter this sym-metry permits us to invert the input/output struture. Hene, visually renderingthe lause I/O struture (as in �gure 1) and reading the diagram from left toright, it beomes apparent that the six initial input variables are mapped totwo �nal output variables. Consequently, reading the vertex struture from rightto left after having imposed opposite input/output struture in the individualprediates permits us to see that the lause struture undergoes a transitionfrom the two input variables A and B, to the six original variables. In so far asit is permissable to regard variable instantiations as ordinates, it is hene pos-sible to re-parameterise the original six-dimensional spae as a two-dimensionalspae haraterising the spae of possible moves. In doing so we have lost noneof the posible instatiations of legitimate ations: we have merely removed all ofthe logial redundany. This then is the proposed perept spae, where we have,in hoosing the observables as fA and Bg rather than fX1; Y 1; Z1; X2; Y 2;and Z2g, e�etively re-oneived the perept spae in the higher-level terms ofobjets and surfaes rather than the lower-level onept of positions. We thusrede�ne the six dimensional ation spae: move(X1; Y 1; Z1; X2; Y 2; Z2) as thetwo-dimensional spae:move(A;B). Randomised ations in the reonsituted per-ept spae are thus now of the 'put objet A onto surfae B' type, as opposedto the 'move gripper from (X1; Y 1; Z1) to (X2; Y 2; Z2)' type; that is, they aremuh more 'intentional'. In algorithmi terms, this perept remapping is simplya ase of establishing whih of the newly introdued variables are non-nestedwith respet to the ensemble of sets of variables de�ned by the various predi-6 This is in fat suÆient to orretly eliminate the vast majority of the (jx1j � jy1j �jz1j)2 proposable transitions in the a priori spae.
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Fig. 1. Example shemati of lause struture.ate groupings. This is the equivalent of determining whih of newly introduedvariables appears in only one of the prediate groupings when prediates withonly input or output strutures are exluded: individual lauses are assumed tooupy separate spaes.4.2 Ative and Passive Exploratory PhasesWhile the above method might thus be expeted to inrease the speed of onver-gene on the �nal objet and perept models, it is evidently possible that it anause onvergene on a loal, rather than global minimum, represented by anaurately inferred subset of the totality of permissable moves. Hene, we shallalternate the ognitive bootstrapping phase with a random exploratory phasethat makes no high-level pereptual assumptions7. The ative phase thus, in ef-fet, ats to fous on those areas deemed permissable by the inferred rule suhthat data apable of falsifying it is obtained very muh more quikly than wouldotherwise be the ase (PROGOL requires only one instane to falsify a hypoth-esis). The random phase then ats to ollet data that is indiative of generalenvironmental rules, of whih the ative phase is perhaps investigating only asubset. The ombination of the two approahes hene produes an exploratorymethod apable of rapidly asending performane gradients, while at the sametime undergoing random perturbations apable of �nding alternative, perhapsmore global, gradients to asend.As a alibration for the above method of alternation (whih might be onsid-ered a primitive form of simulated annealing), we also provide a purely passive-learner in whih PROGOL inferene is applied only to random exploratory a-tions umulatively derived from the a priori perept spae (X1, Y1, Z1, X2, Y2,Z2). For both types of learner, 10 exploratory ations are undertaken at eahiteration.7 Note that there are potentially more eÆient variants on this approah, suh asembarking on a random exploratory phase only after ative perept learning per-formane has reahed a plateau (if some loal riterion ould be established todetermine this, suh as ompressive apability with respet to the umulative ex-ploratory results). For this proof-of-onept demonstration, however, we opt for themost straightforward approah.
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5 Results and onlusions5.1 Experimental �ndingsWe give the average result of ten output runs (ommening after an initial rule-indution of 96% auray) in �gure 2. The ratio of passive yles to ativeyles in the ognitive bootstrap learner is 5 to 1 (orresponding to 10 attemptedations during the ognitive bootstrap yle followed by 50 ations during therandom exploration yle); this is ompared with a purely passive learner. Itis evident that the ative learning proedure ahieves onvergene onsiderablyfaster than the passive learner, onverging on a signi�antly higher auray�gure at the extremity of the tested range.De�ning, more aurately, the respetive absolute performane values onwhih the learners onverge as the average performane value after they haveome within 1 perent of their maximum values, we see that the performane�gures are 99:57 perent for the ative learner and 99:28 perent for the passivelearner.
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Fig. 2. Auray vs iteration number for the ogntive boostrap and passive learners.
5.2 ConlusionsThe outlined experiment has thus demonstrated how it is possible to build arelational pereption-ation learner for the COSPAL arhiteture apable of si-multaneously optimising a perept-domain while optimising its model of theexternal world desribed in terms of these perepts. Thus, ognitive bootstrap-ping aims to reates a spae of pereived ation possibilities that are always(in priniple) realisable, and where redundant ation possibilities are eliminated
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from pereption. The outlined method hene onstitutes an arti�al realisationof Phenomenologists' goal (eg [8℄) of reloating the onepts of representationand symboli meaning in the interation between an agent's apabilities and theworld, as opposed having them spei�ed by purely internal states (ie 'subje-tively'), as they are in onventional mahine vision.In arrying-out this instantiation of relational ognitive bootstrapping in aCOSPAL-like environment, we have also found evidene that, in so far as it maybe regarded as form of ative learning (that is, when the remapping of the pereptspae diretly suggests novel exploratory ations), ognitive bootstrapping angive rise to signi�antly faster training within a pereption/ation domain.Future work will involve oupling the system to the lower-level stohastivision system suh that high-level inferenes an 'pre-�lter' the lower level visionfeatures so as to eliminate pereptual redundany (as determined by the ruleprotools) at these levels as well as the higher-levels (for instane, by meta-identi�ation of logially indistinguishable prediate labels). In this way, one asystem has begun to infer the rules of (say) a hess game via an existing set ofvisual primitives (olour segmentations), it an utilise these protools to assistsegmentation of these primitives in a manner that is more protool-appropriate(say, by preferentially segmenting hess-piees and board-squares).Aknowledgements The work presented here was supported by the EuropeanUnion, grant COSPAL (IST-2003-004176)8Referenes1. David Windridge, Cognitive Bootstrapping: A Survey of Bootstrap Mehanisms forEmergent Cognition in Natural and Arti�ial Agents, CVSSP Tehnial ReportVSSP-TR-2/2005, University of Surrey, UK, 20052. Bowden R, Ellis L, Kittler J, Shevhenko M, Windridge D., Unsupervised SymbolGrounding and Cognitive Bootstrapping in Cognitive Vision, (Leture Notes inComputer Siene, Vol. 3617, Sept 2005)3. G�osta Granlund, Organization of Arhitetures for Cognitive Vision Systems, Pro-eedings of Workshop on Cognitive Vision, 2003, Shloss Dagstuhl, Germany4. D. A. Cohn, Z.Ghabhramani, M. I. Jordan, Ative learning with statistial models,Journal of Arti�ial Intelligene Researh, 4{129, 145, 1996.5. D. Magee, C. J. Needham, P. Santos, A. G. Cohn, and D. C. Hogg, Autonomouslearning for a ognitive agent using ontinuous models and indutive logi program-ming from audio-visual input, Pro. of the AAAI Workshop on Anhoring Symbolsto Sensor Data, 20046. Muggleton S., Indutive Logi Programming, Aademi Press, 19927. J. MCarthy and P. J. Hayes (1969). Some philosophial problems from the stand-point of arti�ial intelligene. Mahine Intelligene, 4:463-502.8. M. Merleau-Ponty, Phenomenology of Pereption, trans. Colin Smith, New York:Humanities Press, 1962.8 However, this paper does not neessarily represent the opinion of the EuropeanCommunity, and the European Community is not responsible for any use whihmay be made of its ontents.
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