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Abstract. Research on computer vision systems for driver assistance
resulted in a variety of approaches mainly performing reactive tasks like,
e.g., lane keeping. However, for a full understanding of generic traffic sit-
uations, integrated and more flexible approaches are needed. We present
a system inspired by the human visual system. Based on combining task-
dependent tunable visual saliency, an object recognizer, and a tracker it
provides warnings in dangerous situations.

1 INTRODUCTION

The goal of building intelligent computer vision systems can be approached from
two directions: either searching for the best engineering solution or taking the
human as a role model. In the latter case, research results from other disciplines
like, e.g., psychophysics or neurobiology, can be used to guide the vision system
design. While it may be argued that the quality of an engineered system in terms
of isolated aspects, e.g., object detection or tracking, is often sound, the solutions
lack the necessary flexibility. Small changes in the task and/or environment often
lead to the necessity of redesigning the whole system. Considering the human
vision system, nature has managed to realize a highly flexible system capable
of adapting to severe changes in the task and/or the environment. Hence one of
our main design goals is to implement a system able to accomplish new tasks
without adding modules or changing the system’s structure. Equally, we aim
at the implementation of the underlying principles of the human vision system
and not directly at engineering efforts to attain its measurable abilities. In other
words, we intend to construct a generic vision system that can operate in the real-
world by modulating and parameterizing submodules without being explicitly
designed for specific tasks of a scenario.

Aiming at going beyond standard industrial computer vision applications,
there is an increasing emphasis in the computer vision community on building
so-called cognitive vision systems (i.e., systems that work according to human
information processing principles) suitable for solving complex vision tasks. One



important cognitive principle is the existence of top-down links in the system,
i.e., informational links from stages of higher to lower knowledge integration.
Top-down links are believed to be a prerequisite for fast-adapting biological
systems living in changing environments.

One particularly interesting dynamic environment for vision systems is ordi-
nary traffic. Although, e.g., lane markings and traffic rules restrict the complexity
of the driving task, the vision systems for driver assistance developed up to now
are mainly capable of dealing with simple traffic situations. While this already
resulted in specialized commercial products improving driving safety (e.g., the
”Honda Intelligent Driver Support System” [1] to help the driver stay in the lane
and maintain the right distance to the preceding car), the problem of developing
a generic vision system for advanced driver assistance, i.e., capable of operating
in all kinds of challenging situations, is still open.

One possible way to achieve this goal is to realize a task-dependent perception
using top-down links. In this paradigm, the same scene can be decomposed in
different ways depending on the current task. A promising approach is to use a
high-performance attention system that can be modulated in a task-oriented way,
i.e., based on the current context. For example, while driving at high speed, the
central field of the visual scene becomes more important than the surrounding.

Aiming towards such a task-based vision system, this paper describes a vision
architecture that is being developed as perceptual front-end of an Advanced
Driver Assistance System (ADAS). The proposed system provides a framework
that enables the task-dependent tuning of visual processes via object-specific
weighting of input features of the attention system. The system generates an
appropriate system reaction in dangerous situations (autonomous braking). Its
architecture is inspired by findings in the human visual system and organizes
the different functionalities in a similar way. For first proof of concept, we focus
on assisting the driver during a critical situation in a construction site. For the
analysis of the attention system, we evaluated the construction site scenario as
well as a challenging inner-city traffic scene to illustrate the performance gain of
the top-down approach in a more complex environment. The system has been
implemented using a software framework for component integration and achieves
real-time performance on a prototype car.

2 RELATED WORK

In the past, the human visual system has been examined in a large number of
studies and the task-dependent nature of gazing has been proven in a variety of
situations including steering a car. For example, the gaze of drivers in a virtual
environment was examined in [2]. The results show that the performance in de-
tecting stop signs is heavily modulated by context (i.e. top-down) factors and not
only by bottom-up visual saliency. Endowing a vision architecture for an intel-
ligent car with similar, task-based attention can result in a gain of performance
with minimal additional resource requirements (see Section 6).



In most research on human visual attention the focus is on the bottom-up
detection of salient features/objects in a scene (for a review see [3]). A well-known
computational model for saliency calculation is the approach by Itti et al. [4] that
is used in a number of implemented systems. Recently, this approach has been
extended by various researchers to account for task-dependent aspects of visual
attention (see, e.g., [5—7]) by applying dynamic weights to different processing
stages. The tasks are often to find a specific object within a predominantly
static indoor scene. A more complete view on a possible architecture for a visual
system incorporating task-dependent visual attention is given by Navalpakkam
and Itti [8]. However, they focus on giving results for a few specific aspects while
some parts of the proposed architecture (especially the combination of top-down
and bottom-up saliency) are not implemented or published yet.

Turning to the domain of vision systems developed for ADAS, there have been
few attempts to incorporate aspects of the human visual system. One of the most
prominent examples is a system developed in the group of E. Dickmanns [9]. Tt
uses several active cameras mimicking the active nature of gaze control in the
human visual system. However, the processing framework is not closely related
to the human visual system. Without a tunable bottom-up attention system
and top-down aspects that are limited to a number of object-specific features
for classification, no dynamic preselection of image regions is performed.

To our knowledge, there are no integrated system architectures in the car
domain that attempt to explicitly model aspects of the human visual system.

3 SYSTEM ARCHITECTURE

The overall architecture concept to realize task-based visual processing is de-
picted in Fig. 1. It contains a distinction between a ’what’ and a ’where’ pro-
cessing path, similar to the human visual system where the dorsal and ventral
pathway are typically associated with these two functions. Among other things,
the 'where’ pathway in the human brain is believed to perform the coarse track-
ing of a small number of objects that are relevant for the current task. This
tracking is performed by the human visual system without focusing the eye gaze
on individual objects to be tracked [10]. In contrast, the 'what’ pathway consid-
ers the detailed analysis of a single spot in the image. In the human visual system
this is intimately bound to the current eye gaze, as the human eye possesses a
high resolution in the central 2-3° (foveal retina area) of the visual field only.
In our vision system the eye gaze is performed virtually as the camera
mounted in the car has a constant resolution in the complete field of view.
Changing the eye gaze is therefore equivalent to shifting the processing to an-
other spot of the input image. This spot is analyzed in our 'what’ pathway in
full resolution while the whole image is analyzed in the 'where’ path in lower res-
olution. Processing in these two pathways is believed to occur in parallel in the
human brain, but their intertwining are as yet not known in too much detail. We
here adopt the idea of continuously tracking a small number of objects in each
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Fig. 1. Architecture concept.

image of the incoming visual stream to coarsely represent the current scene and
at the same time acquiring more detailed information on one additional object.

The detailed organization of the two processing streams in our architecture
concept is as follows: The input image is analyzed in the 'what’ path for salient
locations using a variety of visual features including orientation, intensity, and
motion for saliency computation (see Section 4). By applying top-down informa-
tion, image regions that contain known objects, i.e., that tracked in the 'where’
path, are suppressed during the saliency computation. This suppression is also
known as inhibition of return in the human visual system. A simple maximum
search is used on the resulting saliency map to find the currently most salient
point in the scene. The Focus of Attention [FoA] is determined by region growing
on the overall saliency map using the most salient point as an anchor. This re-
gion is fed to the fast feedforward object recognition system BIPCA [11] that is
trained here to recognize back views of cars as well as signal boards. The image
region together with the object label is stored in the object memory in order to
be tracked coarsely in subsequent images in the 'where’ path. Before insertion, a
check is performed to associate the new object to known objects already in the
object memory. Concluding one iteration, for all objects in the object memory a
3D-world position estimation is calculated based on fusing measurements from
laser and bird’s eye view [12] using an Extended Kalman Filter.

All objects are constantly tracked through predicting the object position
in image coordinates in the next image from the current relative velocity as
extracted by the optical flow [13] and performing a local correlation for the
refinement of the objects’ position. The flow is extracted from downscaled images
(128 x 64) where only half the vertical area is considered, cutting off the sky and
the ego-vehicle. The tracked image regions allow to suppress these areas during
FoA generation in the next images.



In case the prediction does not match (no good correlation found) the system
will stop inhibiting the object in the 'what’ pathway. Consequently, the attention
will be focused on the missing object in one of the next images if the object is
still present and salient. In this way, all objects being recognized and behaving
as predicted are coarsely tracked while the 'what’ attention is always focused on
new objects and objects behaving unexpectedly.

The novelty of our architecture lies in the introduction of top-down aspects
(like, e.g., task-dependent tunable attention generation via sets of weights and
the simultaneous operation of inhibition of return predicted by coarse tracking)
resulting in the ability to cope with highly dynamic traffic scenes using limited
computational resources. The top-down tunable attention system is a key aspect
of our ADAS, since such preprocessing will lead to a considerable reduction of
scene complexity by restricting further processing steps to image regions that are
interesting according to the current system task. Consequently, this sub-system
will be described in more detail in the next Section.

4 VISUAL ATTENTION SUB-SYSTEM

A rough sketch of the visual attention sub-system is depicted in Fig. 2. It consists
of a number of features that are extracted from the image on a set of different
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Fig. 2. Visual attention sub-system.

scales derived from a Gaussian image pyramid starting from 256 x 256 pix-
els. Currently we use the features odd and even Gabor filters in 4 orientations,
Difference of Gaussians filters [DoG] and motion from differential images on 5



scales giving a total of 50 feature maps. The raw feature map responses are
passed through a preprocessing step that consists of squaring, nonlinear noise
suppression by a sigmoidal function, and normalization. In addition to combin-
ing these features to obtain a bottom-up saliency map [4, 14], we also compute
top-down saliency maps using object-specific feature map weights. The object-
specific weights are inspired by [5, 15] in the way the weights are obtained: During
a supervised training stage, the feature map activations of an object are com-
pared to the feature map activations in its surrounding. From this comparison,
the relative importance of a feature (its signal-to-noise [SNR] ratio) can be de-
termined. For each trained object O; and feature channel F; j, we therefore get
a top-down weight wj i D that is proportlonal to how well the feature channel i
of feature type k is able to discriminate the object j from its surrounding:
wlP, = SNR{; (1)
In order to emphasize matching features and suppress irrelevant features, sep-
arate maps for ezcitation E and inhibition I are constructed. Their combination
leads to object-specific conspicuity maps Cg?k.
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It is important to note that the performance gain of this approach compared
to standard attention systems lies in the explicit inhibition of non-target regions.
The conspicuity maps CEB « are combined to an object-specific top-down saliency
map ngD by using feature type specific weights w¢, that are proportional to the
confidence one can assign to the feature type k in the current scene. This could be
done dynamically depending on, e.g., the current weather or lighting conditions.
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In addition, we also calculate a biased bottom-up saliency map by adding all
BU.

feature maps weighted with their specific bottom-up weights w;’;:
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U= "we, PV with  CPY =) w P wPF (6)

i=1

As w?,g we choose a set of weights that shows good performance for most
environments. In the object-unspecific bottom-up path no inhibition takes place,
since its purpose is to evaluate the general unspecific saliency of a scene. The



individual bottom-up feature maps are additionally preprocessed by a pop-out
operator that globally amplifies maps with a small number of maxima and atten-
uates maps with many maxima [4]. The pop-out operator multiplies the feature
maps with a dynamic factor wfzpout computed at runtime. The factor is in-
versely proportional to the number of pixels that are near the maximum of the
feature map. Additionally, wzzpout is decreased by a factor of 4 with decreasing
scale level in the image pyramid to maintain the comparability of scales. By
applying this operator, the bottom-up path is designed to amplify feature maps
that show few maxima, i.e., that are sparse. In consequence, feature maps con-
taining image regions that pop out are boosted. It is of crucial importance that
the top-down feature maps do not pass a similar pop-out step, since by tuning
the top-down weights, we aim at finding objects based on feature conjunctions.
The individual feature map responses for the searched objects might only reach
medium values, whereas the combination of all relevant maps will lead to a strong
response in the resulting saliency map. This explicit differentiation is not made
in other top-down attention systems, which can lead to a performance loss.

The overall saliency map ST! is calculated by linearly combining the nor-
malized top-down and bottom-up saliency maps depending on the current task
of the ADAS. Subsequently, a nonlinear operator is applied to cut off negative
values before the overall saliency map is passed on to the FoA generation (see
previous Section). For weighting the maps we currently use sets of weights for
signal boards and cars that were calculated in a supervised training step. It is
envisioned in later versions of our ADAS to calculate these weights dynamically
at runtime to track and even learn new objects.

5 EXPERIMENTAL SETUP

Technical setup: For the experiments we use a Honda Legend prototype car
equipped with a mvBlueFox CCD color camera from Matrix Vision delivering
images of 800x600 pixels at 10Hz. The image data as well as the laser and vehicle
state data from the CAN bus are recorded. The recorded data is used during
offline evaluation. For the online version, all data is transmitted via LAN to two
Toshiba Tecra A7 (2 GHz Core Duo) running our RTBOS integration middle-
ware [16] on top of Linux. The individual RTBOS components are implemented
in C using an optimized image processing library based on the Intel IPP [17].

Scenario: In order to evaluate the proposed system in a challenging situa-
tion, we concentrate on typical construction sites on highways. This situation is
quite frequent and a traffic jam ending exactly within a construction site is a
highly dangerous situation: due to the S-curve in many construction sites, the
driver will notice a braking or stopping car quite late, see Fig. 3a). Our ADAS
implementation uses a 3 phase danger handling scheme depending on the dis-
tance and relative speed of a recognized obstacle. When an obstacle is detected
in front, a visual and acoustic warning is issued and the brakes are prepared. In
the second phase the brakes are engaged with a deceleration of 0.25 g followed
by hard braking of 0.6 g in the third phase.



Test data for training and evaluation: In order to gain sufficient train-
ing data, we recorded image sequences during normal highway traffic including
construction sites as well as visually complex scenes from driving in inner cities.
For evaluating the vision system, we recorded data in an exemplary construction
site on a private driving range.

6 RESULTS

For the evaluation of the proposed top-down attention system we use streams
from a construction site and from driving in a city (data in parenthesis). Fig. 3
shows an example of the sparseness of the top-down saliency maps tuned to
signal boards (cars) as well as the derived FoAs.

Fig. 3. Output of attention system for construction site and inner-city streams,
a)Unsegmented FoAs, tuned to signal boards, b)TD saliency signal boards, ¢)TD
saliency cars, d)Unsegmented FoAs, tuned to cars, ¢)BU saliency, f)TD saliency cars.

The improvements in selectivity gained by using top-down attention are mea-
sured by counting the number of FoA hits and misses of traffic-relevant signal-
boards (cars) on 280 (240) images of construction site (inner city) streams. We
classify a target as traffic-relevant when it is situated within a maximum distance
of 50 meters (based on the bird’s eye view representation [12]). For evaluation
we count an FoA as a hit if at least half of the object is within the FoA. An
FoA is considered as a miss when a non-target is found although traffic-relevant
and still undetected targets are in the scene. FoAs that are generated on border
regions of already found but only inadequately suppressed targets are counted
as a miss as well. The completeness is defined as the ratio of undetected targets



that have left the image to detected targets. We carried out this analysis by us-
ing either only bottom-up (BU) saliency or the combination of top-down (TD)
and BU saliency (see Tab. 1). The streams contain 56(42) traffic-relevant signal
boards (cars).

Scene Saliency modulation TD, BU |Hits|Misses|Completeness
construction BU 116| 27 84 %
site BU + TD (tuned to signal boards)[126| 11 89 %
inner BU 130| 48 90 %
city BU + TD (tuned to cars) 138 22 90 %
Table 1. Results of evaluation of attention system.

The obtained results show a high completeness for both saliency modulation
methods. However, the number of misses in the pure BU driven case for signal
boards (cars) is about 2.5 (2) times higher than in the TD supported case.
Hence, the application of TD aspects increases the probability of FoAs containing
objects that are relevant to the current task. This leads to fewer iterations of the
whole system to accomplish an exhaustive scene decomposition. In other words,
computationally more demanding processing steps (like, e.g., object recognition)
will work on prefiltered data of higher relevance.

For a proof of concept, we trained the classifier to distinguish cars from non-
cars (clutter). A set of image segments generated by our vision system during
online operation was used for training. It contains 3000 roughly quadratic image
patches scaled to a size of 64x64 pixels, and was divided into the classes ’car’
(300 patches) and ’clutter’ (2700 patches) by visual inspection. Car segments
contain complete back-views of cars (at any position) which must be at least
half as large as the patch in both dimensions. At equal false positive and true
negative rates, an error of 5 % was obtained on an equally large test.

We tested the warning generation offline on 5 construction site streams show-
ing the setting depicted in Fig. 3a. In all streams, the ADAS was able to recognize
and track the car from a distance between 65 and 40 meters. Our system is op-
erating online providing tracking results at a rate of 10 Hz. Currently, we are
parameterizing the coupling between the 3D world position of a detected obstacle
and the phases of the danger handling scheme in order to perform autonomuous
braking experiments.

7 CONCLUSIONS AND FUTURE WORKS

The contribution introduced an integrated vision architecture for ADAS, which
realizes cognitive principles. Encouraging results obtained from the application
of an attention system that can be modulated in a task-oriented top-down
style were presented. The system is working online performing the described
autonomous braking functionality on a Honda Legend prototype car. Our future



work will concentrate on adding further top-down aspects to the system to make
it more flexible and dynamic (e.g., gist that incorporates scene knowledge).
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