
Quality Checks
Fabian Herrmann

fherrmann@techfak.uni-bielefeld.de



Table of Contents

• Introduction to quality checks
• Quality checks workflow in Conquaire

1. FAIR check
2. Filetype specific checks
3. Results and badge

• How to use Conquaire quality checks
• Requirements for Conquaire quality checks
• Benefits for data publications
• Summary



Reproducibility

source: xkcd.com



Idea Behind Our Implementation 
of Quality Checks

● improve data quality without interfering with current research 
practices

● automatic background process
● ensure that scientific data is in a usable state

● guarantee valid data for further research
● make use of common standards

● coverage of CSV and XML files
● quality checks are written in Python 3.6 to provide open source 

standard



Workflow Overview

• User adds data to
repository and commits

• automatic workflow
1. FAIR check
2. Filetype specific checks
3. Results and badge

• User is informed about 
results via email



1. FAIR Check

● adaptive implementation of the 
FAIR checks (http://fairmetrics.org/)

● check for essential files
● AUTHOR (Who has created the 

data?)
● LICENSE (How can the data be 

used for further research?)
● README (What is the data 

about?)

http://fairmetrics.org/


2. CSV/XML/... Checks

CSV (comma separated file)
● usage of Python CSV library
● check for well-formed files

● accessible
● header, consistent number of rows/

columns
● provide optional .ini file to check 

for additional data criteria: 
● column type, range of values



2. CSV/XML/... Checks

XML (extensible markup language)

● use of external LXML library
● check for well-formed file

● accessible
● correct syntax of tags

● provide optional .dtd file to 
check if data complies with 
schema declarations



3. Results and Badge

Quelle: 
https://conquaire.uni-bielefeld.de/feedback/fherrmann/quality_che
cks/be039664af6c5baa8255f23b2b7f1c1e055037cc/result.html

● three possible badges
● valid
● well-formed
● not well-formed

● easy to understand
● also accessible for 

colour-blind people
● overall badge = 

worst individual check result

https://conquaire.uni-bielefeld.de/feedback/fherrmann/quality_checks/be039664af6c5baa8255f23b2b7f1c1e055037cc/result.html
https://conquaire.uni-bielefeld.de/feedback/fherrmann/quality_checks/be039664af6c5baa8255f23b2b7f1c1e055037cc/result.html


Content of Feedback Mail



How to Use Conquaire Quality 
Checks?

1. Place preconfigured .gitlab-ci.yml in your repository directory

2. Add file to your Git (git add .gitlab-ci.yml)

3. Add a commit (git commit -am "Your commit message.")

4. Push changes to your Git (git push)

5. You will receive a mail with a link to your feedback.



Requirements for Conquaire 
Quality Checks

● Server with GitLab instance including a CI runner
● Installation of docker

● Python 3.6 alpine image
● Within container: installation of external libraries LXML and sSMTP
● is provided by preconfigured YAML file

● Installation of mail service
● Accessible web server

source: wikipedia.org source: docker.com



Benefits for Data Publications

● GitLab is connected to PUB 
University of Bielefeld

● create data publication directly 
from GitLab
● no need of double upload

● PUB fetches feedback results 
automatically (submitted via 
JSON)
● public badge indicates data quality



Summary

● create opportunity to ensure reproducibility of research results
● easy handling for all users
● low requirements to use Conquaire quality checks
● simple integration of further filetype specific tests
● improvement of publication standard for data publications in PUB 

University of Bielefeld



Thank you very much!
Fabian Herrmann

fherrmann@techfak.uni-bielefeld.de


	Slide_1
	Slide_2
	Slide_3
	Slide_4
	Slide_5
	Slide_6
	Slide_7
	Slide_8
	Slide_9
	Slide_11
	Slide_10
	Slide_12
	Slide_13
	Slide_14
	Slide_15

