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A repository used for storing and disseminating research is a canonical example of a system which
strives to produce stable artefacts which can be reliably referenced, if not actually preserved, over
time. This is a difficult task, since the normal state of information is constant flux: being updated,
revised, re-written, removed and re-published.

Recent work in deposit technology has tended to centre around the use of a repository as a 'final
resting place' for some research item. It has typically used packages of content, roughly analogous
to the SIP (Submission Information Package) in OAIS [1], to insert 'finished' works into the archive.
An example of this is SWORD [2], which addresses in great detail the deposit mechanism, but is
largely reliant on the payload being a single file (for example, a zip), containing all the information
that the repository needs in order to create an archival object. This places a burden on the depositor
to make an assertion that an item is finished and ready for archiving, and pushes tasks that the
repository is traditionally good at (i.e. storing content) out to whatever system the user is creating
their work in.

Over the past year, Symplectic Ltd [3] has attempted to break down this reliance on the “package”,
and move repository deposit in the direction of not only full CRUD (Create, Retrieve, Update,
Delete), but also to give repository workflows the opportunity to define when a work is “finished”
(at least, provisionally). This will give the repository the opportunity to do what it does best (i.e.
store content), and to allow the administrators — experts in repositories and archiving — to have a
hand in determining whether an item is “finished”, relieving these burdens from the depositor and
their research process.

At the centre of this challenge is the problem of how to convert dynamic, constantly changing
content in the information environment of the academic into static, stable, publishable artefacts in
the repository. This is compounded by the need to do it in a simple, straighforward way which
insulates the user from the underlying complexity.

The process of producing a research article in a journal has many stages and content elements
associated with it. These include, but are not limited to:

* The article itself, pre- or post- print, peer reviewed and not peer reviewed
* Supporting information; documentation produced throughout the research
* Higher quality images than those in the main article

* Source data, collected or produced during the research

Much of this content goes un-seen, and much of it is produced throughout the research and
publication process. The objective at Symplectic was to produce an interface to repositories which
could accept all of these content types throughout the publication lifecycle.



* At the point the article is submitted to the journal, the pre-print (un reviewed), and of the
other supporting documentation, images and data can be placed in the repository.

* After peer review, the un-reviewed version is removed, and the post-reviewed version is
added.

* After publication, the pre-print is removed, replaced with the appropriate post-print.

* At any time during the above process supporting documentation, images and data can be
added and removed as the researcher sees fit.

The repository should be able to handle this constant change and variety of data without any
problems, which is non-trivial using a fire-and-forget style package depositor.

This paper aims to discuss the general problems associated with mapping dynamic content to static
content, showing how the repository can play an active role in the process without compromising
their archival integrity (and perhaps even enhancing it). In the process of this, we will look at some
specifics of repository technology, and how it can be used to solve the problems. In particular we
are interested in:

* How can we use standard repository workflows? Are they a help or a hinderance?

* How do repositories manage versioning, and is it sufficient for our needs?

* How do repository data models handle the potential complexity of the bibliographic, and
administrative data that goes alongside the content?

Symplectic Ltd has developed an interface based on AtomPub [4] and SWORD for DSpace [5],
EPrints [6] and Fedora [7], and have tackled these problems in each of these software environments.
There are remarkable similarities between these systems, and subtle but important differences,
which make them better or worse at certain aspects of the problem. We will review the workflows,
data models and versioning mechanisms for each of these systems in relation to the problem, and
find the following worth remarking on:

Workflows

DSpace and EPrints have formally constructed workflow processes, while Fedora has none. EPrints
has a single space (called a “buffer”) in which items being validated for archive sit; this makes it
more difficult for EPrints to explicitly make the administrator aware of workflow-affecting changes
in the item. DSpace, meanwhile, has a multi-stage workflow, and this makes it easier, although by
no-means ideal, for the system to alert the administrator when an item they are validating has been
changed from outside. Fedora has no such concepts, although it is common for workflow state to be
stored inside Fedora objects, giving it significant scope for managing incoming dynamic content,
but with an associated amount of effort required on the part of the owner.

Versioning

Fedora has file versioning built-in, but no formal support for higher level “item” versioning; this
makes file alterations straightforward, but larger structural changes to the item need to be custom
managed. EPrints has item level versioning built in to its user interface, but only supports a single
version chain; since it is possible in certain environments to have version chains which bifurcate and
merge, this can be a hinderance as much as it is a help. DSpace has no versioning support at any
level, although it is possible to “fake” versioning via metadata annotation; this has the advantage of
being extremely flexible, but the disadvantage of being completely unrecognised by the application
itself.



Data Models

There is broad agreement across the repository platforms as to the appropriate data model.
Certainly in terms of structural model, there is barely any difference, although only DSpace
recognises multiple ownership for its content elements. Key differences emerge through metadata
handling: DSpace has a strictly flat native metadata mechanism, EPrints supports hierarchical
metadata, and Fedora is highly agnostic to the process, preferring just to store metadata in files.

By examining these features of the repository, we will show how it is possible to implement a good
archiving solution for a changing set of content, and will suggest improvements to all the repository
architectures, emphasising the following features:

* That versioning should be on all scales: both files and structurally

» That versioning should allow multiple inheritance and multiple children

* That data models should support hierarchical metadata

* That repositories should include better tools for managing and manipulating complex objects

There is a fair amount of work to do before this technology is broadly available, but we will
demonstrate its use in Symplectic Elements [8], a Research Management System, which allows
academics to manage their repository content alongside their publication lists, professional web
pages, and academic CVs. It is heavily repository agnostic, with implementations for DSpace,
EPrints, Fedora and IntraLibrary (currently under development) [9], and will also shortly be
extended to DigiTool, a commercial repository from Ex Libris [10]. We will show an idealised
walkthrough demonstrating all the aspects of the system: integration with workflow, CRUD,
versioning and archival integrity.

We will conclude by claiming that this technology would be of benefit to both researchers and
repository managers, by offering to bring them closer together, without either side having to become
familiar with eachother's technology environments. The advantage to the researcher is never having
to interface directly with a repository, while acquiring “deposit” as a by-product of simple file
management. The advantage to the repository manager is an increase of throughput to the archive,
and intervention earlier in the publishing lifecycle.
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