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Abstract
As psychologists considered synchrony as an important param-
eter for social interaction, we hypothesize that in the case of
social interaction, people focus their attention on regions of in-
terest where the visual stimuli are synchronized with their inner
dynamics. Then, we assume that a mechanism able to detect
synchrony between internal dynamics of a robot and external
visual stimuli can be used as a starting point for human robot
interaction. Inspired by human psychological and neurobiolog-
ical data, we propose a synchrony based neural network archi-
tecture capable of selecting the robot interaction partner and of
locating Focus of Attention.
Index Terms: Human Robot Interaction, Synchrony, Focus of
Attention, Partner Selection, Dynamical Systems.

1. Introduction
Human verbal interaction is not only speech dependent. In fact,
many non-verbal behaviors such as facial expressions, pauses
during discussion, hand movements etc. are also involved [1].
An important aspect of these non-verbal communications is
their timing and synchrony according to the partner’s behav-
ior. Psychological Studies of dyadic interactions shows that
synchrony is a necessary condition for interaction between an
infant and his mother [2]. Recently, Dumas et al.[3] revealed,
using hyperscanning, the emergence of inter-brain synchroniza-
tion across multiple frequency bands during social interaction.
Interpersonal motor coordination between people can be ob-
served while walking along with someone [4]. Marin et al. un-
derlined that motor resonance between robots (humanoid) and
humans could optimize the social competence of human-robot
interactions [5]. Qiming Shen et al. also did related experiments
[6].

By the above discussion, it is clear that synchrony is an im-
portant parameter for social interaction as well as largely wit-
nessed in natural dynamical systems. In this paper, we use im-
mediate synchronous imitation as a communication tool. We
present here a neural network architecture for socially interact-
ing robots.

2. Materials and Methods
We used a minimal setup for our experiments as shown in fig-
ure 1. Components includes Nao robot, basic automata (1 de-
gree of freedom), human and cameras. To avoid the frame rate
limitation of the Nao’s camera through the ethernet connection
(limited to 10 Hz), a new camera has been added for Nao’s vi-
sion. The frame rate for our experiments is 30 Hz.

To analyze synchrony, we need to investigate the dynam-
ics of interaction between two signals. To do so, we use the
Phase Locking Value (PLV) which is a practical method pre-
sented by Lachaux et al. [7]. The PLV for two signals is

Figure 1: Setup for our experiments. (a) Nao robot (b) Basic
Automata (made in the lab) (c) and (d) Overall setup for human-
robot and robot-robot interaction.

defined by PLVn,r = 1
T
|
∑T
t=1 exp(i(φn − φr))|, where

T is the number of samples and φn − φr is the phase dif-
ference between two signals. When there is synchroniza-
tion the PLV value is close to 1 otherwise the PLV value ap-
proaches to 0. Videos of our experiments can be found on:
http://www.etis.ensea.fr/neurocyber/Videos/synchro/

3. Human Robot Interaction
Here, we propose a model based on dynamical interactions of
two agents. Agent 1 (Nao robot) dynamically adopts or imi-
tates the behavior of agent 2 (human / automata). Our aim is to
provide to Nao limited capabilities to interact with other agents
by dynamically adopting the frequency and phase of the other
agents. Velocity vectors estimated by an optical flow algorithm
represent the visual stimuli and inputs for our architecture.

The oscillator model is shown in figure 3(a). It is made of
two neurons N1 and N2, fed by a constant signal and multi-
plied by the parameters α1 and α2 (equation 1 and 2). These
two neurons inhibit each other proportionality to the parameter
β.

N1(n+ 1) = N1(n) − βN2(n) + α1 (1)

N2(n+ 1) = N1(n) + βN2(n) + α2 (2)

The frequency of the oscillator depends on the parameters α1,
α2 and β. In addition, a reservoir of oscillators (echo state net-
work) could be used to work with a larger range of frequencies.

As shows in figure 3(a), the oscillator is connected with
Nao’s arm and oscillates normally at its own frequency and am-
plitude. Motion in the visual field of Nao is estimated by an
optical flow algorithm, velocity vectors are then converted into
positive and negative activities. If the perceived movements are
in the upward direction, the oscillator gets the positive activity
and its amplitude increases. On contrary, if the negative activity
is perceived amplitude goes down. When an agent interacts with
a motion frequency close to NAO’s frequency, Nao’s oscillator
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Figure 2: (a) Shows two motion signals (human and Nao). (b)
PLV measurement. (c) Lissajous curve between N(t) (Nao’ os-
cillation) and H(t) (Human’s movements), (d) Lissajous curve
betweenN(t) andN(t+5). (e) Positive and Negative activities
deduced from optical flow. (f) Real image seen by camera.

can be modified within certain limits otherwise it continues to
his default frequency. Mathematical equation of the oscillator
can be rephrased asN1(n+ 1) = N1(n)−βN2(n) +α1 +f ′.
Where f ′ is the induced energy.

As shown in figure 3(a) a modifiable oscillator is connected
with Nao’s arm. When there is no visual input it oscillates nor-
mally but if a human comes and interact with Nao by imitat-
ing him, Nao synchronizes with human by modifying his fre-
quency and phase . Figure 2(a) shows the motion signals of
both NAO’s and the human arm while trying to interact by imi-
tating games. Initially, both are unsynchronized. PLV (indicator
of synchrony) has its lowest value (see figure 2(b)). As shown in
Figure 2(a) and 2(b), during the interaction both Nao and human
are synchronizing little by little similar to a pendulum coupling.
The increasing PLV values also show the emerging synchrony.
Figures 2(a) and 2(b) also clearly illustrate that, after a certain
time, the agents are completely synchronized, the correspond-
ing PLV values are at the highest possible range. Figure 2(c)
shows Lissajous curve between the motion signals of Nao’s (
N(t) ) and human’s movements (H(t)). The elliptic shape of
the curve indicates that both signals are almost identical. Fig-
ure 2(e) is a snapshot taken during experiment illustrating posi-
tive and negative activities in the visual field deduced using the
optical flow velocity vectors. Figure 2(e) shows two moving ob-
jects in the field of view of Nao. One moves upward and induces
positive activities (shown by filled black color pixels) while the
other moves downward and induces negative activities (unfilled
pixels). Figure 2(f) shows the real image seen by the camera.

Interesting facts are observed during experiments, some of
these observations were also made by Pantaleone in his study
of metronomes synchronization [11]. First, if the natural fre-
quency of the two agents (in his case two pendulums) differs
by more than a certain limit, synchronization will not occur.
The range of interacting frequency (that can be synchronized
with Nao) can be expanded by increasing the coupling energy

f ′(by scaling coupling factor) that feeds the Nao’s oscillator.
With low scaling factor both agents can be synchronized if their
natural frequency differs by more than few percents similarly,
higher scaling factor leads to higher range of frequencies. For
this human/robot interaction, the default frequency of Nao’s
oscillator was 0.428 Hz while human’s interacting frequency
(measured by adding the active pixels of motion estimation)
was between 0.4615 Hz to 0.476 Hz (7.8% to 11% higher than
Nao’s frequency) with 0.15 as a scaling factor and 15% as the
corresponding ∆f (difference between the natural frequencies
that can be synchronization). A coupling factor of 0.3 leads to
∆f = 29% with little variations on the amplitude, a scaling
factor of 0.5 results to ∆f = 72% but this higher coupling
introduces amplitude saturation. We also observed that for the
same parametric conditions, if the natural frequencies of both
agents are the same no phase leg was observed but as the ∆f
increases to a certain limit the phase leg increases too. We ex-
perienced 00 to 900 of phase shift in our experiments.

4. Selection of Partner
We propose a neural network architecture (Figure 3(b)) that se-
lects an interacting partner on the basis of synchrony detec-
tion among various interacting agents. Previously, the modi-
fiable Nao’s oscillator controlling the arm movement was di-
rectly connected to the visual stimuli (f ′). Now, the coupling
is made through an oscillator-prediction module (f ′′). The
reason for indirect coupling is to make sure that the architec-
ture will entertain the visual stimuli (optical flow) that is simi-
lar to its own motion (learnt by the oscillator-prediction mod-
ule). Equation of modifiable oscillator can be rewritten as
N1(n + 1) = N1(n) − βN2(n) + α1 + N + f ′′. Where
f ′′ is the energy induced by the Oscillator-prediction module.

The oscillator-prediction block (represented by y′) is linked
to the robot’s oscillator (represented by y) with a non modifi-
able link while the image of visual activities (represented by
X) is linked with a modifiable link. The Oscillator-prediction
(y′) module learns the robot’s oscillation as a weighted sum of
active pixels. The neuron activity in the Oscillator-prediction
(y′) can be computed using X → y′ synapses by : y′i(t) =∑
kεXWXk−y′i

Xk that corresponds to the predicted future
value.The learning of X → y′ synaptic weights can be com-
puted by equation 3 and is based on NLMS (Normalized Least
Mean Square) algorithm (Synaptic learning modulation η is ad-
ditionally added) [8].

WXj−y′i
(t+dt) = WXj−y′i

(t)+αη.
yi(t) − y′i(t)∑
kεX Xk(t)2 + σ1

.Xj(t) (3)

Where y′ stands for the Oscillator-prediction,X for the im-
age of visual activities and y for the NAO’s arm Oscillator, α is
the learning rate and WXj−y′i

represents the synaptic weights
from Xj to Oscillator − prediction neuron i, yi is the activ-
ity transmitted to neuron i by the oscillator, it is a target sig-
nal for the Least Mean Square (LMS) algorithm [9]. To im-
prove the LMS convergence during the learning phase, we in-
troduced the learning modulation η. The normalization term∑
kεX Xk(t)2 + σ1 is specific to the NLMS and σ1 is a small

value used to avoid the divergence of the synaptic weights if the
visual activities (X) values are too small.

Now we consider the complete scenario. For the selection
of partner, the architecture works in two phases: learning phase
and testing phase. During the learning phase, NAO oscillates
according to its default frequency (no visual stimulus). NAO
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Figure 3: (a) Dynamical Interaction model (b) Selection of Part-
ner: select a interacting partner on the basis of synchrony de-
tection. (c) Shows attentional mechanism architecture.

looks at its own hand. It initiates two processes. First the oscil-
lator prediction module which was zero due to non availability
of visual stimuli starts now predicting robot’s modifiable oscil-
lator as a weighted sum of its own visual stimuli. The oscillator-
prediction module learns associations between NAO’s motion
and the visual activities induced by NAO’s arm. As a conse-
quence, it also modifies the NAO’s oscillator (as described in
section 3). This process of modifying, learning and adapting
continues and converge after some time. This adjustment can
be assumed as a basic process by which infants gain self re-
flective abilities as underlined by Rochat [10]. After this phase,
NAO learns to predict oscillatory movements similar to his own
movement. When an agent interacts with a frequency similar
to the learned one, weights (that are already learnt on modifi-
able links) are associated with the visual activities induced by
the human movements and Nao’s modifiable oscillator adopts
the interacting frequency and phase. If the interacting fre-
quency is different from the learnt one, the weights (modifiable
links) could not be associated with the visual stimuli and NAO
continues to move at his default frequency. Same is true for
multiple agents case. Among two interactants only the agent
having a similar frequency as Nao is selected. In this exper-
iment, the coupling factor was 0.07, Nao’s default frequency
was 0.407 Hz, automata synchronized frequency was 0.4318
Hz (6% higher) and human synchronized frequency was 0.36
Hz (11% less). When a subject interacts with a frequency close
to the learnt one, this selection of partner algorithm selects this
agent as a good interacting partner and NAO modifiable oscil-
lator synchronizes with it. Good results are obtained with this
architecture, they are collectively shown in the next section.

5. Attentional Mechanism
Here, we use prediction of synchrony as a parameter to attract
the attention of the robot. If two visual stimuli are presented at
the same time and only one of them has the same frequency as
NAO. NAO will then synchronize with the ”interacting” partner
corresponding to his frequency and select him as a partner (by
selection of partner algorithm). However, NAO will not be able
to locate the good interacting partner in its visual field, because

this algorithm (partner selection) works on the perceived en-
ergy irrespective of the spatial information (agent location). To
locate the correct interacting partner, the proposed FOA algo-
rithm dynamically locate the correct interacting partner (defined
by the selection of partner algorithm) using spatial predictions.
Figure 3(c) shows the architecture of FOA. When a human inter-
acts (using arm / hand), the image-prediction block (X ′′) learns
the image of these movements as a weighted sum of Nao’s syn-
chronized frequency. This makes it possible to predict the cor-
responding human movements. After a short while, an other
agent comes and moves with a different frequency (lower or
higher than Nao), X ′′ which already learnt synchronized rhyth-
mic movements predicts strongly the first synchronized agent
compared to the unsynchronized one. Our algorithm modulates
this predicted synchrony with the current visual stimuli and cal-
culates the average value (acting as short term memory). As the
synchronized image is well predicted its correlation values are
higher than the asynchronous movements. Figure 3(c) shows
that all the pixels of the memory block is projected on y axis
(i.e all pixels in each column are added to find the highest cor-
related column). Then a Winner Takes All (WTA) selects the
highest activated column. This selected column indicates the
location of synchronized movement and the robot can point to
the synchronized region to show the current Focus Of Attention
(FOA). For this experiment the resolution of the predicted im-
age of optical flow is 32× 24 (32 columns or location), these 32
possible locations are realized in 600 (−300 to 300) circular an-
gles. The learning rule of the movement-prediction (X ′′) mod-
ule is almost the same as the oscillator-prediction module and
the weights are normalized to smooth the learning processes.

5.1. Results

we examine our selection of partner algorithm along with FOA
architecture (figure 3(c)) in two situations: one Automata (1-
DoF) and one human (only one of them is synchronized at a
time). Results show that when the Automata moves similarly
to Nao’s movements while human oscillates with a different
frequency, Nao synchronizes with the Automata (selection of
partner) and FOA mechanisms turns towards Automata. If the
human adopts his frequency close to Nao, Nao aligns himself
with the human and FOA moves towards human.

These results of both algorithms are shown in figure 4 by
two sets of graphs. Figure 4(a) shows the onset of the experi-
ment, where the Automata enters in the visual field of Nao from
the left side (about−200) and imitates him. Consequently, both
become synchronized using our selection of partner algorithm.
Figure 4(a1) sketches the signals of Nao modifiable oscillator
and Automata illustrating how they become synchronized. Fig-
ure 4(a3) shows the PLV value (measure of synchrony) of the
two agents. Initially, PLV is low but as the interaction gets
longer it increases to higher value. As the Automata interacts,
FOA moves towards Automata as Shown in Figure 4(a4). Fig-
ure 4(a2) shows signals of Nao and human illustrating that ini-
tially there is no interaction by human from the right side of the
robot. After 700 time units (23.33 seconds) human comes with
a different frequency. He does not succeeded in disturbing the
selection of partner (PLV remains high for Automata) and FOA
remains towards the Automata.

Now, the automata is tuned to a low frequency and human
is instructed to imitate NAO (figure 4(b1) and (b2)). As a re-
sult, Nao switches the synchronized region, from left (−200)
to right side (about 270). The PLV related to human increases
to the highest value while the Automata PLV shifts to a lowest
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Figure 4: Results: (a) shows start of experiment with single agent and then disturbed by the other agent. (b) Different frequency agents
interact with Nao.

one (figure 4(c3)). FOA shifts from the automata to the human
(figure 4(c4)). After 2650 time units (88.3 sec), the Automata
is tuned to its previous frequency again and the human is in-
structed to make different oscillations. Consequently, this in-
duces a switch of the FOA and the recognized interacting part-
ner (figure 4(b)).

6. Conclusion and discussion
We proposed a novel approach for building autonomous robots
that can interact with multiple agents and select an interacting
partner among several on the basis of synchrony detection. We
also showed that synchrony prediction could be used as a way
to establish focus of attention. From the psychological point of
view, we were inspired by the unconscious communications be-
tween humans. The synchronous exchanges during social inter-
actions are directly associated to the sensorimotor information
of the two agents. These inter brain networks are ”symmetric”
in low frequency band while ”asymmetric” in high frequency
bands [3]. This could reflect the different processing levels of
information. In our case, synchronization between two agents
can be assumed as “symmetric” in low frequency band and Fo-
cus of attention can be associated with high frequency carrier.

Actually we are studying three human-robot applications
for synchrony detection. The first and most obvious one is to
extend the model to learn more complex interactions (complex
gestures). Indeed, synchrony detection and selection of part-
ner permit to maintain interaction with a partner moving syn-
chronously with the robot in terms of low fundamental tempo-
ral frequency of interaction. As a result, more complex ges-
tures (higher temporal frequencies) can be imitated and learnt
autonomously by the robot while interacting with the human
partner. Similarly, we aim to use our architecture for naviga-
tion tasks. A mobile robot can choose a synchronous agent to
interact with and consequently learn complex navigation tasks
by keeping synchrony while moving with the selected partner.
Finally and in a global point of view, we question the use of
synchrony detection, focus of attention and selection of partner
in turn-taking games during interaction. In fact, synchrony can

not only be considered as a starting point for social interaction
but also as a way to re-engage the interaction with a selected
partner.
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