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Abstract
This paper studies an interactive learning system that couples
internally guided learning and social interaction in the case it
can interact with several teachers. Socially Guided Intrinsic
Motivation with Interactive learning at the Meta level (SGIM-
IM) is an algorithm for robot learning of motor skills in high-
dimensional, continuous and non-preset environments, with two
levels of active learning: SGIM-IM actively decides at a meta-
level when and to whom to ask for help; and an active choice of
goals in autonomous exploration. We illustrate through an air
hockey game that SGIM-IM efficiently chooses the best strat-
egy.
Index Terms: Active Learning, Intrinsic Motivation, Social
Learning, Programming by Demonstration, Imitation.

1. Introduction
In initial work to address multi-task learning, we proposed the
Socially Guided Intrinsic Motivation by Demonstration (SGIM-
D) algorithm which merges socially guided exploration as de-
fined in[1, 2, 3, 4] and intrinsic motivation [5, 6, 7, 8] based
on SAGG-RIAC algorithm [9], to reach goals in a continuous
task space, in the case of a complex, high-dimensional and con-
tinuous environment [10]. Nevertheless, the SGIM-D learner
uses demonstrations given by a teacher at regular frequency. It
is passive with respect to the social interaction and the teacher,
and does not optimise the timing of the interactions with the
teacher, not to mention that it did not consider the everyday
situation where it has several human teachers around him, to
whom it can ask for help. Some works have considered the
choice among the different teachers that are available to be ob-
served [11] where some of them might not even be cooperative
[12], but have then overlooked autonomous exploration. Our
new SGIM-IM (Socially Guided Intrinsic Motivation with In-
teractive learning at the Meta level) learner is able to choose
between active autonomous and social learning strategies, and
in the case of social learning, whom to imitate from.

2. General Framework
2.1. Formalisation

In this subsection, we describe the learning problem that we
consider. Csibra’s theory of human action finds that infants
connect actions to both their antecedents and their consequents
[13, 14]. Thus, every episode would be described as [con-
text][action][effect].

Let us describe different aspects of the states of a robotic
system and its environment by both a state/context spaceC, and
an effect/task space Y (an effect/task can be considered as re-
stricted to the changes caused by the agent’s actions). For given
contexts c ∈ C, actions act ∈ ACT allow a transition towards
new states y ∈ Y (fig. 1 and 2). We define the actions act
as parameterised dynamic motor primitives, i.e. temporally ex-
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Figure 1: Data Flow under the Intrinsic Motivation strategy
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teacher 1

tended macro-actions controlled by parameters a in the action
parameters space A. The association (c, a, y) corresponds to a
learning exemplar that will be memorised. Our agent learns a
policy through an inverse model M−1 : (c, y) 7→ a by building
local mappings of M : (c, a) 7→ y, so that from a context c and
for any achievable effect y, the robot can produce y with an ac-
tion a. We can also describe the learning in terms of tasks, and
consider y as a desired task or goal which the system reaches
through the means a in a given context c. In the following, both
descriptions will be used interchangeably.

2.2. SGIM-IM Overview

SGIM-IM learns by episodes during which it chooses actively
its learning strategy between intrinsically motivated exploration
or social interaction with each of the existing teachers.

In an episode under the intrinsic motivation strategy (fig.
1), it actively generates a goal yg ∈ Y of maximal competence
improvement, then explores which actions a can achieve the
goal yg in context c, following the SAGG-RIAC algorithm [9].
The exploration of the action space gives a local forward model
M : (c, a) 7→ y and inverse model M−1 : (c, y) 7→ a, that it
can use later on to reach other goals. The SGIM-IM learner ex-
plores preferentially goals where it makes progress the fastest.
It tries different actions to approach the self-determined goal,
re-using and optimising the action repertoire of its past au-
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Algorithm 2.1 SGIM-IM
Initialization: R← singleton C × Y
Initialization: flagInteraction← false
Initialization: Memo← empty episodic memory
Initialization: ∆0, ...∆i, ... : progress values made by strategy i
among: autonomous exploration or social learning with either teacher
loop
strategy ← Select Strategy(prefS , prefA)
if Social Learning Strategy then

demo← ask & perceive demo to the selected teacher i
(cdemo, ademo, ydemo)← Correspondence (demo)
Emulate Goal: yg ← ydemo
γs ← Competence for yg
Memo← Imitate Action(ademo, c)
γ ← Competence for yg
Add γ − γs to stack ∆i

else
Intrinsic Motivation Strategy
Measure current context c
yg ← Decide a goal(c,R)
γs ← Competence for yg
repeat

Memo← Goal-Directed Action Optimisation(c, yg)
until Terminate reaching of yg
γ ← Competence for yg
Add γ − γs to stack ∆0

end if
R← Update Goal Interest Mapping(R,Memo, c, yg)

end loop

tonomous exploration or the actions suggested by the teacher’s
demonstrations of the social learning strategy. The episode ends
after a fixed duration.

In an episode under the social learning strategy with teacher
i (fig. 2), our SGIM-IM learner observes the demonstration
[cdemo, actdemo, ydemo], memorise this effect ydemo as a pos-
sible goal, and imitates the demonstrated action actdemo for a
fixed duration.

The SGIM-IM learner actively decides on a meta level
which strategy to choose according to the recent learning
progress enabled by each strategy. If it has recently made the
most progress in the intrinsic motivation strategy, it prefers ex-
ploring autonomously. Conversely, if the demonstrations does
not enable him to make progresses higher than by autonomous
learning (limited teacher, or inappropriate teacher) it would pre-
fer autonomous exploration.

3. SGIM-IM Architecture
3.1. A Hierarchical Architecture

SGIM-IM (Socially Guided Intrinsic Motivation with Interac-
tive learning at the Meta level) is an algorithm that merges in-
teractive learning as social interaction, with the SAGG-RIAC
algorithm of intrinsic motivation [9], to learn local inverse and
forward models in complex, redundant, high-dimensional and

Algorithm 3.2 [strategy] = SelectStrategy(∆S ,∆A)

input: ∆0, ...∆i, ... : progress values made by strategy i
among: autonomous exploration or social learning with ei-
ther teacher
output: flagInter : chosen strategy
parameter: nbMin : duration of the initiation phase
parameter: ns : window frame for monitoring progress
parameter: costi : cost of each strategy
Initiation phase
if Social Learning and Intrinsic Motivation Regimes have not
been chosen each nbMin times yet then
pi ← 0.5

else
Permanent phase
for all strategies do
wi ← average(last ns elements of ∆i)

end for
pi ← min(0.9,max(0.1, costi×wi∑

costj×wj
))

end if
strategy← i with probability pi
return strategy

continuous spaces and with several teachers. Its architecture
(alg. 2.1) is separated into three layers (fig. 3) :

• An interface with the teacher, which manages the inter-
action with the teacher. It decides in an active manner
whether to request a demonstration and to whom (Select
Strategy) and interpreting his actions or his intent and
translates the demonstrations into the robot’s represen-
tation system (Correspondence, which is an important
issue [15] but will not be addressed in this study.

• The Task Space Exploration, a level of active learning
which drives the exploration of the task space. With the
autonomous learning strategy, it sets goals yg depending
on the interest level of previous goals, by stochastically
choosing the ones for which its empirical evaluation of
learning progress is maximal (Decide a Goal). With the
social learning strategy, it retrieves from the teacher in-
formation about demonstrated effects ydemo (Emulate a
Goal). Then, it maps C × Y in terms of interest level
(Goal Interest Mapping).

• The Action Space Exploration, a lower level of learning
that explores the action space A to build an action reper-
toire and local models. With the social learning strategy,
it imitates the demonstrated actions actdemo, by repeat-
ing it with small variations (Imitate an Action). During
self-exploration, the Goal-Directed Action Optimisation
function attempts to reach the goals yg set by the Task
Space Exploration level, 1) by building local models dur-
ing exploration that can be re-used for later goals and
2) by optimising actions to reach yg . Then, the Action
Space Exploration returns the measure of competence at
reaching ydemo or yg .

The active choice of learning strategy will be described
hereafter. For the other parts of the architecture, which are com-
mon to SGIM-D, please refer to [10] for more details.

3.2. Select Strategy

Based on the recent progress made by each of them, a meta
level chooses the best strategy among autonomous exploration
and social learning with each of the teachers. For each episode,
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the learner measures its progress as the difference of compe-
tence at the beginning and the end of the exploration for the
self-determined or the emulated goal, and adds this progress
value to stacks ∆i, where i is the current strategy (i = 0 for
autonomous exploration, i = 1 for social learning with teacher
1, i = 2 with teacher 2,...). The preference for each strategy
is computed as the average on a window frame of the last ns
progress values of ∆i. Setting the value of ns does not depend
on the complexity of the tasks but more on the size of the task
space. It needs to allow appropriate sampling of Y by each
method. In our simulations, ns = 20. Besides, to limit the
reliance on the teacher and take into account the availability of
each teacher, we penalise the preference for social learning with
a costi factor (costi = 100). For the autonomous exploration
strategy, cost0 = 1. The strategies are selected stochastically
with a probability proportional to their preference (alg 3.2).

We applied our hierarchical SGIM-IM algorithm with 2
layers of active learning to an illustration experiment.

4. AirHockey Experiment
4.1. Description of the Experimental Setup

Our first experimental setup is a simulated square air hockey ta-
ble that contains an obstacle (fig. 4). Starting with a fixed posi-
tion and velocity (1 single context), the puck moves in straight
line without friction. The effect is the position of the impact
when the puck collides with the top border of the table. Y is
thus the top border of the table, mapped into the [−1, 1] seg-
ment, which highlights the subregion hidden by the obstacle as
difficult to reach.

We control our mallet with a parameterised trajectory de-
termined by 5 key positions u0, u1, u2, u3, u4 ∈ [−1, 1]2 (10
scalar parameters) at times t0 = 0 < t1 < t2 < t3 < t4 (4
parameters). The trajectory in time is generated by Gaussian
distance weighting:

u(t) =

5∑
i=0

wi(t)ui∑5
j=0 wj(t)

with wi(t) = eσ∗|t−ti|2 , σ > 0 (1)

Therefore, A is of dimension 14 and Y of dimension 1. The
learner maps which trajectory of the mallet a induces a collision
with the top border at position y. This is an inverse model of
a highly redundant mapping, which is all the more interesting
than the obstacle introduces discontinuities in the model.

4.2. Experimental Protocol

We detail in this subsection the experiments we carry with our
air hockey table, how we processed to evaluate SGIM-IM and
provide our learner with demonstrations.

Figure 5: Comparison of several learning algorithms

4.2.1. Comparison of Learning Algorithms

To assess the efficiency of SGIM-IM, we decide to compare the
performance of several learning algorithms (fig. 5):

• Random exploration: throughout the experiment, the
robot picks actions randomly in the action space A.

• SAGG-RIAC: throughout the experiment, the robot ex-
plores autonomously driven by intrinsic motivation. It
ignores any demonstration by the teacher.

• SGIM-IM: interactive learning where the robot learns by
actively choosing between social learning strategy or in-
trinsic motivation strategy, and who to imitate from.

• SGIM-D: the robot’s behaviour is a mixture between Im-
itation learning and SAGG-RIAC. When the robot sees
a new demonstration, it imitates the action for a short
while. Then, it resumes its autonomous exploration, un-
til it sees a new demonstration by the teacher. Demon-
strations occur every T actions of the robot.

For each experiment in our air hockey setup, we let the
robot perform 10000 actions in total, and evaluate its perfor-
mance every 1000 actions. For the air hockey experiment, we
set the parameters of SGIM-IM to: cost = 10 and ns = 20,
and those of SGIM-D to T= 50.

4.2.2. Demonstrations and Evaluation

We simulate 2 teachers by using the learning exemplars taken
from Random and SAGG-RIAC learners. For teacher 1, we
choose demonstrations in [−1, 0.5] with each ydemok ∈ [−1 +
k×0.01,−1+(k+1)×0.01]. For teacher 2, we likewise choose
demonstrations in [0.5, 1], that manage to place the puck behind
the obstacle.

We assess the algorithms by measuring how close they can
reach a benchmark set distributed over Y = [−1, 1] and placed
every 0.05, with the mean error at reaching the benchmark
points.

4.3. Results

Fig.6 plots the mean distance error of the attempts to hit the bor-
der at the benchmark points, with respect to the number of ac-
tions performed by the mallet. It shows that while Random ex-
ploration and SAGG-RIAC error decrease, SGIM-IM performs
significantly better, and faster. It almost divided by a factor of
10 the final error value compared to SAGG-RIAC. Its error rate
is always smaller than for the other algorithms since the very
beginning. SGIM-IM has taken advantage of the demonstra-
tions very fast to be able to hit the puck and place it on the
top border, instead of making random movements which would
have little probability of hitting the puck, let alone placing it
at the benchmark position. Its performance is comparable with
SGIM-D. This shows that its active choice of strategy was able
to choose social learning over autonomous learning to bootstrap
its progress, and to vary its choice of teacher to overcome the
limited subspaces of the demonstrations of each teacher .
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Figure 6: Evaluation of the performance of the robot with re-
spect to the number of actions performed, under different learn-
ing algorithms. We plotted the mean distance to the benchmark
set with its variance errorbar.

Figure 7: Percentage of times each strategy is chosen by SGIM-
IM with respect to the number of actions performed: intrinsic
motivation (green), social learning with teacher 1 (red) and with
teacher 2 (blue).
4.4. Active Choice of Strategy

As for the strategy adopted, fig.7 shows that total number of
demonstration requests increases in the very beginning, as they
are most useful in the beginning, as each indicate to the learner
which kind of actions can make the mallet hit the puck whereas
random movements have low probability of hitting the puck.
After this first phase, the learner prefers autonomous learning
because of the cost of asking for teachers’ help. It then increases
again in the second half of the experiment when the progress
made by autonomous exploration decreases. Demonstrations
then help the learner improve in precision.

Furthermore, requests were asked more often to the teacher
1 as he covers a more important subspace of Y . This indicates
that the learner could detect the difference in teaching capabil-
ities of the 2 teachers. We would also like to point out that
the number of demonstrations of teacher 2 made a small peak
around 6500 when the error curve stops decreasing, showing
that his help was most useful once the learner has managed to
reach the subspace of Y that is easy to reach before getting in-
terested in the subspace behind the obstacle. This slight peak
effect can be more visible with more experiments to improve
our statistics, and by complementary figures to analyse this ef-
fect.

5. Conclusion
We presented SGIM-IM (Socially Guided Intrinsic Motiva-
tion with Interactive learning at the Meta level), an algorithm
that combines intrinsically motivated exploration and interac-
tive learning with demonstrations. With an architecture organ-

ised into 3 layers, it actively decides when and to whom to ask
for demonstrations. Through an air hockey experimental setup,
we showed that SGIM-IM efficiently learns inverse models in
high-dimensional, continuous and non-preset environment de-
spite high redundancy. Its active choice of strategy was able to
choose social learning over autonomous learning to bootstrap
its progress, and to choose the right teacher to overcome the
limited subspaces of the demonstrations of each teacher. It thus
offers a framework for more flexible interaction between an au-
tonomous learner and its users.
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