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1 Introduction 

This work describes a multi-component vision system that enables pervasive map-

ping of human attention. The key contribution is that our methodology enables full 

3D recovery of the gaze pointer, human view frustum and associated human cen-

tered measurements directly into an automatically computed 3D model. We apply 

RGB-D SLAM and descriptor matching methodologies for the 3D modeling, lo-

calization and fully automated annotation of ROIs (regions of interest) within the 

acquired 3D model. This methodology enables fully automated processing of hu-

man attention, without artificial landmarks, in indoor natural environments. 

2. Implementation

This work presents a computer vision system methodology that, firstly, enables 
to precisely estimate the 3D position and orientation of human view frustum and 
gaze [1] and from this enables to precisely analyze human attention in the context 
of the semantics of the local environment (objects [10], signs, scenes, etc.). Second-
ly, the work describes how ROIs (regions of interest) are automatically mapped 
from a reference video into the model and from this prevents from state-of-the-art 
laborious manual labeling of tens / hundreds of hours of eye tracking video data. 
This provides a scaling up of nowadays still small sketched attention studies. With 
the presented methodology, extended natural environments, such as shop floor de-
partments, analysis of navigation guidance, and human-robot interaction, can be 
studied first time in large scale, statistically significant usability studies.  

For a spatio-temporal analysis of human attention in the 3D environment, we first-

ly build a spatial reference in terms of a three-dimensional model of the environ-

ment using RGB-D SLAM methodology [2]. Secondly, the user’s view is gathered 

with eye tracking glasses (ETG) within the environment and localized from ex-

tracted local descriptors [3]. Then ROIs are marked on imagery and automatically 

detected in video and further mapped into the 3D model. Finally, the distribution 

of saliency onto the 3D environment is computed for further human attention 

analysis, such as, evaluation of the attention mapping with respect to object and 

scene awareness. Saliency information can be aggregated and further evaluated in 

the frame of user behaviors of interest. The performance evaluation of the present-
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ed methodology firstly refers to results from a dedicated test environment [4] 

demonstrating very low projection errors, enabling to capture attention on daily 

objects and activities (package logos, cups, books, pencils).  

3 Gaze recovery in 3D without artificial markers 

Human Attention Analysis in 3D. 3D information recovery of human gaze has in 

principle been targeted by Munn et al. [2] who introduced monocular eye-tracking 

and triangulation of 2D gaze positions of subsequent key video frames, obtaining 

observer position and gaze pointer in 3D with angular errors of ≈3.8°. Pirri et al. 

[3] achieved accuracy indoors about ≈3.6 cm at 2 m distance to the target com-

pared to our ≈0.9 cm [1]. Previous attempts focused on single 3D point recovery. 

Our approach maps fixation within a 3D environment model with the possibility 

of real-time tracking of attention with mass marketed eye-tracking hardware. 

Visual Map Building and Camera Pose Estimation. For realistic environ-

ment modeling we make use of an RGB-D sensor providing per pixel color and 

depth information at high frame rates. Our environment consists of a sparse point-

cloud, where each landmark [4] is attached for data association during pose track-

ing. Estimated camera poses are stored in a 6DOF manner. Incremental camera 

pose tracking assuming an already existing map is done by keypoint matching fol-

lowed by a least-square optimization routine minimizing the reprojection.  

Densely Textured Surface Generation. For realistic environment visualiza-

tion, user interaction and subsequent human attention analysis, a dense, textured 

model of the environment is constructed. Depth images are integrated into a 3D 

occupancy grid [5] using the previously corrected camera pose estimates.  

3D Gaze Recovery from Monocular Localization. To estimate the proband’s 

pose, SIFT keypoints are extracted from ETG video frames and a full 6DOF pose 

is estimated using the perspective n-Point algorithm [6].  

Automated 3D Annotation of Regions of Interest. Annotation of ROIs in 2D 

or even 3D information usually causes a process of massive manual interaction. In 

order to map objects of interests, such as, logos, package covers, etc. into the 3D 

model, we first use logo detection in the high resolution scanning video to search 

for occurrences of predefined reference appearances, using vocabulary trees [4].  

Semantic Mapping of Attention. The automatic detection of ROIs in 3D ena-

bles statistical evaluations, such as on ROIs called AOI hit, which states for a raw 

sample or a fixation that its coordinate value is inside the ROI [7]. From this, the 

dwell time distribution for ROIs can be plotted over all participants, and some of 

the captured fixations are related to human object recognition which is known to 

trigger from 100 ms of observation / fixation [8].  
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4 Experimental results 

Eye Tracking Device. The mass marketed SMI™ eye-tracking measure the 

gaze pointer for both eyes with 30 Hz. The gaze pointer accuracy of 0.5°–1.0° and 

a tracking range of 80°/60° horizontal/vertical assure a precise localization of the 

human’s gaze in the HD 1280x960 scene video with 24fps. We recorded data on a 

shop floor covering an area of about 8x20m² (Figure 1). We captured 2366 RGB-D 

images, reconstructed the model from 41700 natural visual landmarks.   

5 Conclusions and future work 

We present a complete system for (i) wearable data capturing, (ii) automated 

3D modeling, (iii) automated recovery of human pose and gaze, and (iv) automat-

ed ROI based semantic interpretation of human attention. The presented system is 

a significant step towards a mobile mapping framework [9] for quantitative analy-

sis of human attention measures [7,10] in natural environments (Figure 2). Future 

work will focus on improved tracking of the human pose across image blur and 

uncharted areas as well as study human factors in the frame of stress and emotion 

in the context of the 3D space. 

(a) (b)

(c) 

Figure 1. Hardware (a) for the 3D model building process (Kinect and HD camera), (b) 

study with packages, (c) 3D environment model, a large shop floor. 
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Figure 2. Mapping of user saliency onto the acquired 3D model and automated recovery of 

the trajectory of ETG camera positions (spheres), as well as recovery of frustum (green 

lines) and gaze pointer (blue). 


