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Abstract— In this paper we propose an energy
function-based optimization method in order to improve
the approximation ability of the self-organizing relation-
ship (SOR) network. In the execution mode, the SOR net-
work can be used as a fuzzy inference engine. The output
of the SOR network is calculated by using the reference
vectors andmatching parameters. The matching param-
eters, which correspond to the standard deviation of the
Gaussian membership function used in fuzzy inference, are
only defined in the execution mode. However, the issue of
the optimization of the matching parameters has not yet
been treated in previous works. To optimize the matching
parameters, we introduce an energy function to the SOR
network. The energy function can be used not only to
tune the matching parameters but also to fine-tune the ref-
erence vectors with a gradient descent method. The pro-
posed method is applied to a function approximation prob-
lem and the improvement of the approximation ability is
confirmed.

1 Introduction

The self-organizing relationship (SOR) network [1][2] was
proposed as an extension of the self-organizing map (SOM)
[3][4] in order to extract a desirable input-output relation-
ship of a target system using learning vectors with their
evaluations. Some models related to the SOM such as the
learning vector quantization (LVQ) and supervised SOM
[4] are intended for pattern classification and employ su-
pervised learning. On the other hand, the SOR network
is designed to implement a given input-output mapping,
where the learning is achieved by “learning with evalua-
tion”. The input-output data pairs of the target system can
be subjectively evaluated by intuition of designers or objec-
tively evaluated by mathematical evaluation functions. Not
only desirable data with a good evaluation but also undesir-
able data with a bad evaluation are utilized as learning data.
Therefore, it is especially effective to employ the SOR net-
works in the cases where it is difficult or costly to acquire
the desirable data of the target system, that is, teaching out-
put data. The SOR network has been successfully applied
to power system stabilization [1], trailer-truck back-up con-
trol [5], image enhancement [6], etc.

The operation of the SOR network is divided into two
modes, the learning mode and the execution mode. In
the learning mode, the SOR network extracts the desirable
input-output relationship of the target system as reference
vectors. In the execution mode, the SOR network can be
used as a fuzzy inference engine. The execution mode of
the SOR network corresponds to a simplified fuzzy infer-
ence method [7].Matching parameters, which correspond
to the standard deviation of the Gaussian membership func-
tion used in fuzzy inference, are only defined in the execu-
tion mode in order to calculate similarity measures between
an input data vector and reference vectors. Although the
output of the SOR network depends on the matching pa-
rameters, the optimization of the matching parameters has
not yet been discussed in previous papers.

In this paper we propose an energy function-based op-
timization method in order to improve the approximation
ability of the SOR network. In the fuzzy inference scheme,
the optimization of parameters of membership functions is
carried out by minimizing errors between inference out-
puts and teaching outputs [8][9]. However, since the
SOR network employs learning with evaluation which does
not need teaching outputs but evaluations of input-output
data pairs, the error potentials typically used in supervised
learning cannot be used. In the proposed method, an en-
ergy function is introduced to optimize matching param-
eters. The energy function can be used not only to tune
the matching parameters but also to fine-tune the reference
vectors with a gradient descent method. To confirm the
usefulness of the proposed method, the proposed method is
applied to a function approximation problem.

2 Self-organizing Relationship net-
work

The SOR network consists of an input layer, an output layer
and a competitive layer as shown in Figure 1. The input and
output layers can accept input data vectors ofn elements
and output data vectors ofm elements, respectively. The
competitive layer hasN units, each of which is character-
ized by a reference vectorvj = (wj , uj) which consists of
an input reference vectorwj and an output reference vector
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Figure 1: Architecture of SOR network. (a) Learning
mode. (b) Execution mode.

uj . The network can be established by learning in order to
approximate a desired functiony = f(x), wherex is an
input vector andy is an output vector.

2.1 Learning mode of the SOR network

In the learning mode, learning vectorsI l = (xl,yl) with
their respective evaluation valueEl are applied to the input
and output layers as shown in Figure 1(a). The evaluation
valueEl is assigned by the network designer, given by in-
tuition of the user or obtained by examining the system un-
der test. The value ofEl ranges from -1 to 1. Positive and
negative evaluation values represent good and bad evalua-
tions, respectively. The reference vectors are attracted to
the learning vectors with a positive evaluation value, i.e.
”attractive learning”, whereas the reference vectors are re-
pulsed from the learning vectors with a negative evaluation
value, i.e. ”repulsive learning”. In this paper, the batch
learning algorithm proposed in [5] was used. The learning
algorithm of the SOR network is summarized as follows.

Step 0. All reference vectorsvj = (wj , uj) (j =
1, 2, . . . , N) are initialized by random numbers.

Step 1. The best matching unitl∗ for each learning vec-
tor I l = (xl, yl) is chosen as a unit with the smallest Eu-
clidean distance.

l∗ = arg min
j

∥I l − vj∥. (1)

Step 2. A Gaussian neighborhood function is calculated
as follows:

h(l∗, j) = exp
(
−∥rj − rl∗∥2

2σ2(t)

)
(2)

whererj andrl∗ are the positions of the unitj and the best
matching unitl∗ on the competitive layer andσ(t) is the
width of the neighborhood function and decreases with the
learning stept.

Step 3. Updating value of each reference vector is calcu-
lated as follows.

For attractive learning (El ≥ 0):

∆vp
j,l = α(t) · h(l∗, j) · Ep

l · (I l − vj), (3)

For repulsive learning (El < 0):

∆vn
j,l = β(t) · h(l∗, j) · En

l · exp
(
−∥I l − vj∥

σr

)
× (I l − vj)
∥I l − vj∥

, (4)

where∆vp
j,l and∆vn

j,l are the updating values for thel-th
learning vector with a positive evaluation valueEp

l and a
negative evaluation valueEn

l , respectively,α(t) andβ(t)
are the learning rates for the attractive learning and for the
repulsive learning, respectively andσr is the parameter that
decides the extent of the repulsive effect.

Step 4. Each reference vector is updated according to

vj(t + 1) = vj(t)

+

Lp∑
l=1

∆vp
j,l +

Ln∑
l=1

∆vn
j,l

Lp∑
l=1

α(t) · h(l∗, j) · Ep
l +

Ln∑
l=1

β(t) · h(l∗, j) · |En
l |

(5)

whereLp, Ln are the numbers of the learning vectors with
positive and negative evaluation values, respectively. All
updating values given by Eq. (3) and (4) are accumulated
and normalized in this process.

Step 5. Steps 1 to 4 are repeated with decreasingθ(t) =
(α(t), β(t), σ(t)) monotonically. Usually, these values are
calculated at each learning stept by the following equation.

θ(t) = (θ(0) − θ(tmax)) · exp(− t

τ
) + θ(tmax) (6)

wheretmax is the number of learning iterations andτ =
(τα, τβ , τσ) is decay rate. Whenσ(tmax) is very small, the
input-output relationship obtained from the learning vec-
tors is finely represented as the reference vectors, whereas
when σ(tmax) is relatively large, the reference vectors
roughly approximate the input-output relationship.

2.2 Execution mode of the SOR network

After learning, the SOR network is ready to be used as a
fuzzy inference engine as shown in Figure 1(b). An out-
put vector of the SOR network for a given input data vector
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x∗ = [x∗
1, . . . , x

∗
i , . . . , x

∗
n] is calculated as follows. Soft-

matching degreezj is calculated from the function with re-
spect to the distance betweenx∗ and the input reference
vectorwj :

zj = exp

(
−∥x∗ − wj∥2

2γ2
j

)
(7)

where the Gaussian function is used to transform the dis-
tance, i.e. dissimilarity measure into similarity measure.
We refer to this transform function asmatching function
and to the parameterγj as matching parameter. A suit-
able matching function is one that corresponds to the mem-
bership function in fuzzy inference, e.g. an exponential
function or a triangular function. The matching parameter
γj represents fuzziness of similarity. In [1], the constant
matching parameter was used for all matching functions,
whereas in [5], the matching parameters were assigned to
the average distance between the reference vectorwj and
the nearest other reference vectors as follows:

γj =
1
H

H∑
h=1

∥wj − w
(h)
j ∥ (8)

wherew
(h)
j is theh-th nearest reference vector according

to the distance to the reference vectorwj . H is the number
of the reference vectors used for average calculation and is
assigned empirically in consideration of the distribution of
the reference vectors.

The obtained output vectory∗ = [y∗
1 , . . . , y∗

k, . . . , y∗
m]

is the weighted average of the output reference vectors by
the soft-matching degrees. Thus, thek-th element ofy∗ is
given by

y∗
k =

N∑
j=1

zj · ukj

N∑
j=1

zj

. (9)

3 Energy Function-Based Optimiza-
tion Method

In this section, an energy function-based optimization
method is described. Since the output of the SOR network
is calculated using Eq. (7) and (9), the approximation abil-
ity of the SOR network depends on the matching parame-
ters. An energy function is introduced to the SOR network
in order to improve the approximation ability.

3.1 Definition of Energy Function

Let us consider the case that the SOR network has a scalar
output. Energy functions for learning data with positive

and negative evaluation values are chosen to be represented
by

Jp
l =

1
2
Ep

l · (yl − y∗
l )2 for El ≥ 0 (10)

Jn
l = ε · |En

l | · exp
(
−|yl − y∗

l |
σr

)
for El < 0 (11)

whereyl is the output data of thel-th learning vector and
y∗

l is an obtained output for thel-th input data vector.ε and
σr are the parameters that determine the height and width
of the energy function. The evaluation valuesEp

l , En
l rep-

resent a degree of contribution to the energy. These energy
functions are based on the concepts of attractive learning
and repulsive learning. As the obtained output comes close
to the output data with a positive evaluation value, the en-
ergy becomes small and vice versa. On the other hand, as
the obtained output comes close to the output data with a
negative evaluation value, the energy becomes large and
vice versa. The energy can be interpreted as a degree of
undesirability of the obtained output. These energy func-
tions are used to optimize the matching parameters and the
reference vectors. The optimization of the parameters is
achieved by reducing the energy

J =
Lp∑
l=1

Jp
l +

Ln∑
l=1

Jn
l . (12)

3.2 Modification of the execution mode

In the execution mode, the soft-matching degreezj is cal-
culated by Eq. (7). To improve the representation ability
of the SOR network, the calculation of the soft-matching
degree is modified as follows:

zji = exp

(
− (x∗

i − wji)2

2γ2
ji

)
, (13)

zj =
N∏

i=1

zji (14)

wherezij is the soft-matching degree betweeni-th element
of x∗ andi-th element ofwj . The matching parameterγji

is determined with the following tuning method.

3.3 Tuning mode of the SOR network

In order to obtain the accurate input-output relationship,
the operation of the SOR is extended from two modes to
three modes. After the learning mode, the matching pa-
rameters and reference vectors are tuned with a gradient
descent method using the learning data. We refer to this
procedure astuning mode. The main purpose of the tuning
mode is to tune the matching parameters according to the
energy gradient since the matching parameters are not de-
termined during learning. The initial value of the matching
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parameterγji is assigned to the average distance calculated
by Eq. (8). The reference vectors are also fine-tuned in
a manner taking into account the output of the SOR net-
work. In the learning of the SOM, reference vectors after
learning approximately represent the distribution of the in-
put data vectors. The learning of the SOR network inherits
this property. The reference vectors approximate the dis-
tribution of the learning vectors with a positive evaluation,
avoiding the learning vectors with a negative evaluation.
However, the learning of the SOR network does not take
into consideration the output calculated by Eq. (9).

The matching parameters and reference vectors are tuned
after each learning data is presented, according to the en-
ergy gradient as follows:

Ψ(s + 1) = Ψ(s) − η ·
∂Jp

l

∂Ψ(s)
for El ≥ 0 (15)

Ψ(s + 1) = Ψ(s) − η · ∂Jn
l

∂Ψ(s)
for El < 0 (16)

whereΨ(s) = (wji(s), uj(s), γji(s)), s is the tuning step
that is increased each time one of the learning data is pre-
sented,η is the tuning rate and sgn(·) represents the sign
function. The partial derivatives are calculated as follows:

For learning data with a positive evaluation (El ≥ 0):

∂Jp
l

∂uj
= −Ep

l · (yl − y∗
l ) · zj∑N

i=1 zi

, (17)

∂Jp
l

∂γji
= −

∂Jp
l

∂uj
· (y∗

l − uj) ·
(xli − wji)2

γ3
ji

, (18)

∂Jp
l

∂wji
= −

∂Jp
l

∂uj
· (y∗

l − uj) ·
(xli − wji)

γ2
ji

. (19)

For learning data with a negative evaluation (El < 0):

∂Jn
l

∂uj
= ε · |En

l | ·
sgn(yl − y∗

l )
σr

· exp(−|yl − y∗
l |

σr
)

zj∑N
i=1 zi

, (20)

∂Jn
l

∂γji
=

∂Jn
l

∂uj
· (uj − y∗

l ) · (xli − wji)2

γ3
ji

, (21)

∂Jn
l

∂wji
=

∂Jn
l

∂uj
· (uj − y∗

l ) · (xli − wji)
γ2

ji

. (22)

The tuning process is repeated until a termination criterion
is met.

4 Simulation Results

In order to verify the proposed method, it was applied to
the approximation of the following function:

y = 0.3 cos(πx1) + 0.3 cos(πx2)

+ 0.8 exp(−30(x2
1 + x2

2)) − 0.4 x1, x2 ∈ [−1, 1].
(23)
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Figure 3: Learning vectors. Filled circles and open cir-
cles indicate the learning vectors with positive and negative
evaluation values, respectively.

The target function and the distribution of the learning vec-
tors are presented in Figure 2 and 3, respectively. The
learning vectors consist of 512 learning vectors with a pos-
itive evaluation value (denoted by filled circles) and 512
learning vectors with a negative evaluation value (denoted
by open circles). The evaluation valueEl of the l-th learn-
ing vectorI l = (xl, yl) is calculated by the following
equation:

El = −1 + 2 exp(−5dl) (24)

where dl is the distance between the output of the tar-
get function and the output datayl of the learning vector.
In the learning, the number of learning iterationstmax =
200, the number of units on the competitive layerN =
100(10 × 10), σr = 0.05, α(0) = 1.0, α(tmax) = 0.01,
β(0) = 0.2, β(tmax) = 0.001, σ(0) = 10, σ(tmax)=0.01,
τα = 30, τβ = 30, τσ = 30. In the tuning, the tuning rate
η = 0.01 and the number of tuning epochs was 1000. The
distribution of the reference vectors after the learning mode
is presented in Figure 4(a). Almost all reference vectors
were placed in the regions where the learning vectors with
a high positive evaluation value were distributed. However,
the sharpness of the central region was not represented by
the reference vectors. A few reference vectors were placed
around the central region since the number of the learning
vector around the peak of the target function was smaller
than other regions.
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Figure 4: Simulation Results. (a) Distribution of the reference vectors after the learning mode. (b) Obtained output with
the matching parameters assigned by the average distance withH = 2. (c) Obtained output with the constant matching
parameterγji = 0.05. (d) Obtained output after tuning of the matching parameters. (e) Distribution of the reference
vectors after tuning of the reference vectors. Note that the scale ofy-axis is different from other graphs. (f) Obtained
output after tuning of the reference vectors. (g) Distribution of the reference vectors after tuning of both the reference
vectors and matching parameters. (h) Obtained output after tuning of both the reference vectors and matching parameters.
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Table 1: Energy and RMSE comparisons.
Method EnergyJ RMSE
Average distance 1.256 0.0824
Constant(γji = 0.05) 0.592 0.0612
Tuning: matching parameters 0.561 0.0493
Tuning: reference vectors 0.607 0.0436
Tuning: both 0.376 0.0352

The links between the reference vectors represent the
neighboring relationships of the units on the competitive
layer. The obtained output with the matching parameters
that were assigned to the average distance are shown in
Figure 4(b). H was assigned to be 2. In this case, the
obtained output was very smooth and did not represent the
sharpness around the central region. The obtained output
with the constant matching parameterγji = 0.05 is shown
in Figure 4(c). The sharpness around the central region
was relatively well represented. However, the output was
not smooth over the whole regions. To obtain the output
with both the smoothness and the sharpness, each match-
ing function needs to have an optimal matching parameter.
The obtained output after the tuning of the matching pa-
rameters is shown in Figure 4(d). In this case, the refer-
ence vectors were fixed and only the matching parameters
were tuned with Eq. (15) and (16). The smoothness and
the sharpness of the target function were represented ex-
cept the peak region where the reference vectors did not
exist. The distribution of the reference vectors and the ob-
tained output after the tuning of the reference vectors are
shown in Figure 4(e) and (f), respectively. The reference
vectors around the central region were moved greatly from
the initial positions indicated in Figure 4(a) to reduce the
energy. The obtained output represented the input-output
relationship of the target function well. The distribution of
the reference vectors and the obtained output after the tun-
ing of both the reference vectors and matching vectors are
shown in Figure 4(g) and (h), respectively. The movements
of the reference vectors were smaller than those in Figure
4(e). Nevertheless, the obtained output approximated the
input-output relationship of the target function well.

To compare the proposed method with ones previously
used, the energyJ for the learning data and root-mean-
square error (RMSE) for 1600 test input vectors were cal-
culated. The averages of the energyJ and RMSEs in ten
trials are shown in Table 1. The tuning of both the reference
vectors and matching parameters resulted in the smallest
energy and the smallest RMSE. The results indicate that
the proposed method outperforms the methods previously
used.

5 Conclusions

In this paper we proposed an energy function-based op-
timization method in order to improve the approximation

ability of the SOR network. The operation of the SOR net-
work was extended from two modes to three modes. The
matching parameters and reference vectors are tuned with a
gradient descent using the learning data in the tuning mode.
The proposed method was verified through a function ap-
proximation problem. The smallest energy and the small-
est RMSE were obtained by tuning the reference vectors
and matching parameters according to the proposed energy
function. In future work, it is necessary to apply the pro-
posed method to practical applications to verify the effec-
tiveness.
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