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Abstract— We propose an extension of the self-
organizing map for supervised fuzzy classification learn-
ing, whereby uncertain (fuzzy) class information is also al-
lowed for training data. The method is able to detect class
similarities, which can be used for data vizualization. Ap-
plying a special functional metric, derived from of the Lp
norms, we show the application of the method for classi-
fication and visualization of hyper-spectral data in satellite
image remote sensing image analysis.

1 Introduction
The self-organizing map (SOM) introduced by T. KOHO-
NEN constitutes one of the most popular data mining and
visualization methods for processing of high-dimensional
and complex data [12]. It is based on principles of pro-
totype based unsupervised vector quantization whereby a
topological grid structure with neighborhood cooperative-
ness is installed on the set of prototypes, usually chosen
as a rectangular two-dimensional lattice. However, other
arrangements are possible. Under certain conditions the
SOM prototype adjustment (learning) generates a model
which allows a nonlinear mapping of the given data set
onto a the low-dimensional regular lattice in a topology-
preserving fashion [12] for easy data analysis and interpre-
tation [20].

During the last years, several extensions of the basic
SOM have been established to make the approach more
flexible and to assess the quality of the generated model
[23]. These are related to adaptive lattice structures, to
the processing of structured data and to handling of la-
beled data by supervised learning. Thereby, the handling
of appropriate, problem dependent data metrics becomes
also more and more important (metric adaptation) [8].

Although the learning scheme of the SOM is quite sim-
ple, its mathematical foundation is non-trivial. Most theo-
retical results are only valid for special cases, whereas more
general approaches become intractable. In particular, it is a
blemish that the usual SOM does not follow a gradient de-
scent on any cost function [5] such that the final state is not
well defined. This problem can be solved by a small modi-
fication of the original learning scheme, as it was shown by
HESKES [11].

This modification offers new possibilities for supervised
learning using SOMs, i.e. for active utilization of data la-
bels during training. Several extensions of the unsuper-
vised SOM were presented for processing supervised clas-
sification tasks ranging from simple post-labeling, the well-
known counter-propagation network to combine SOMs and
multilayer perceptrons or fuzzy decision schemes [10, 12].
However, all these methods have in common that the pro-
totype learning of the underlying SOM is not influenced by
the subsequent classification learning, and, hence, the pro-
totypes are not adjusted in dependence of the classification
task. The FuzzySOM proposed by P. VUORIMAA imposes
a supervised learning vector quantization scheme for the
SOM-prototypes (LVQ) on an unsupervised trained usual
SOM to learn a classification task [24]. The subsequent
LVQ learning rule does not minimizes the classification er-
ror. Thus both parts of FuzzySOM are based on heuris-
tics and, therefore, have not well-determined optimization
goals. Moreover, the topographic mapping learned during
the unsupervised SOM phase may be violated by the clas-
sification learning, because neighborhood cooperativeness
is not integrated in LVQ.

Here we propose the utilization of the cost function ac-
cording to HESKES in combination with a misclassifica-
tion penalization term as the new cost function for super-
vised SOM. Thereby fuzzy class memberships of training
data are allowed, i.e. uncertain class information is can be
used. Minimizing of the proposed cost function by gradi-
ent descent leads to the fuzzy labeled SOM (FLSOM). Like
the usual SOM, the FLSOM generates a topology preserv-
ing data mapping onto the SOM grid for faithful training
conditions and proper data. Moreover, each prototype is
equipped with a fuzzy label vector describing its proba-
bilistic or possibilistic class membership. Using the topol-
ogy preservation property of the SOM one can derive class
similarities by investigation of the spatial distribution of the
class membership within the lattice environment, which fi-
nally allows similarity preserving visualization of the clas-
sification by multi-dimensional scaling (MDS) of the label
vectors.

The power of the FLSOM is demonstrated for hyper-
spectral image analysis of satellite remote sensing spec-
tral data. In this context a special data similarity mea-



sure is used based on the Minkowski-norm. This so-called
(parametric) functional norm takes the spatial correlations
within each spectrum into account. We further integrate the
idea of metric adaptation into the above FLSOM scheme
which improves classification and gives a task dependent
filtering of the spectra. This is done by optimizing of the
functional norm as a gradient descent with respect to the
norm parameters.

2 Fuzzy-Labeled SOM

2.1 Basic SOM with cost function
Originally, the SOM is an unsupervised learning of topo-
graphic vector quantization such that data are mapped onto
a regular grid of nodes (neurons). Assume data v ∈
V ⊆RDV are given distributed according to an underlying
distribution P (V). A SOM is determined by a set A of neu-
rons r equipped with weight vectors/prototypeswr ∈ RDV

and arranged on a lattice structure which determines the
neighborhood or topological relation N(r, r0), the discrete
grid distance, between neurons r and r0. Denote the set of
prototypes byW = {wr}r∈A. In the SOM variant accord-
ing to HESKES [11], the mapping description of a trained
SOM defines a function

ΨV→A : v 7→ s (v) = argmin
r∈A

de (v, r) . (1)

with local (data) errors

de (v, r) =
X
r0∈A

hσ(r, r
0)ξ (v,wr0) (2)

and
hσ(r, r

0) = exp

µ
−N(r, r

0)

σ

¶
(3)

determines the neighborhood cooperation with range σ >
0. ξ (v,w) is an appropriate distance measure, usually the
standard Euclidean norm

ξ (v,wr) = kv−wrk2 = (v−wr)
2 . (4)

However, here we assume ξ (v,w) to be arbitrary suppos-
ing that it is a differentiable and symmetric function which
measures some data similarity. In this formulation, an input
stimulus is mapped onto that position r of the SOM, where
the distance ξ (v,wr) is minimum, whereby the average
over all neurons according to the neighborhood is taken.
We refer to this neuron s(v) as the winner.

During the adaptation process a sequence of data points
v ∈ V is presented to the map representative for the data
distribution P (V). Each time the currently most proximate
neuron s(v) according to (1) is determined. All weights
within the neighborhood of this neuron are adapted by

4wr = −�hσ (r, s(v))
∂ξ (v,wr)

∂wr
(5)

with learning rate � > 0. This adaptation follows the sto-
chastic gradient descent of the cost function

ESOM =
1

2C(σ)

Z
P (v)

X
r

δs(v)r · de (v, r) dv (6)

were C (σ) is a constant which we will drop in the follow-
ing, and δr

0

r is the usual Kronecker symbol checking the
identity of r and r0.

One main aspect of SOMs is the visualization ability
of the resulting map due to its topological structure. Un-
der certain conditions the resulting non-linear projection
ΨV→A generates a continuous mapping from the data space
V onto the grid structure A [21]. This mapping can mathe-
matically be interpreted as an approximation of the princi-
pal curve or its higher-dimensional equivalents [9]. Thus,
as pointed out above, similar data points are projected on
prototypes which are neighbored in the grid space A. Fur-
ther, prototypes neighbored in the lattice space should code
similar data properties, i.e. their weight vectors should be
close together in the data space according to the metric ξ.
This property of SOMs is called topology preserving (or
topographic) mapping realizing the mathematical concept
of continuity. For a detailed consideration of this topic we
refer to [21].

2.2 Integrating fuzzy classification into SOM
We now integrate the label (class) information into the
learning scheme of SOM to allow supervised learning. This
is done in such a way that the prototype adjustment is de-
pending on both the data distribution as well as the label
information. Assume training point v is equipped with a
label vector x ∈ [0, 1]C describing the class information
of C classes, whereby the component xi of x determines
the probabilistic/possibilistic assignment of v to class i for
i = 1, . . . , C. Hence, we can interpret the label vector as
probabilistic or possibilistic fuzzy class memberships. In
case of probabilistic labeled data we have the constraintPC

i=1 xi = 1 and for crisp labeled data the additional con-
dition xi ∈ {0, 1} holds. Accordingly, we add to each
prototype vector wr of the map a label vector yr ∈ [0, 1]C
which determines the amount of neuron r assigned to the
respective classes. The new cost function to be minimized
contains two terms: the unsupervised part ESOM and a new
one EFL describing the classification accuracy

EFLSOM = (1− β)ESOM + βEFL (7)

where β ∈ [0, 1] is a balance factor to determine the in-
fluence of the goal of clustering the data set and the goal
of achieving a correct labeling. One can simply choose
β = 0.5, for example. For classification accuracy we
choose

EFL =
1

2

Z
P (v)

X
r

ce (v, r) dv (8)
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with local, weighted classification errors

ce (v, r) = gγ (v,wr) (x− yr)
2 (9)

and gγ (v,wr) is a Gaussian kernel describing a neighbor-
hood range in the data space:

gγ (v,wr) = exp

µ
−ξ (v,wr)

2γ2

¶
. (10)

This choice is based on the assumption that data points
close to the prototype determine the corresponding label
if the underlying classification is sufficiently smooth. Note
that gγ (v,wr) depends on the prototype locations, such
that EFL is influenced by both wr and yr, and, hence,
∂EFL
∂wr

contributes to the usual SOM-learning by

∂EFL
∂wr

= − 1

4γ2

Z
P (v) · ce (v, r) · ∂ξ (v,wr)

∂wr
dv (11)

The label update is independent from the first term ESOM
such that it simply becomes

∂EFL
∂yr

= −
Z

P (v) · gγ (v,wr) · (x− yr) dv (12)

It can be interpreted as a weighted average of the data fuzzy
labels of those data close to the associated prototypes.

As mentioned above, unsupervised SOMs generate a
topographic mapping from the data space onto the pro-
totype grid under specific conditions. If the classes are
consistently determined with respect to the varying data,
one can expect for supervised topographic FLSOMs that
the labels become ordered within the grid structure of the
prototype lattice. In this case the topological order of the
prototypes should be transferred to the topological order
of prototype labels such that we have a smooth change of
the fuzzy class label vectors between neighbored grid posi-
tions. This is the consequence of following fact: the neigh-
borhood function hσ (r, s) of the usual SOM learning (5)
forces the topological ordering of the prototypes. In FL-
SOM, this ordering is further influenced by the weighted
classification error ce (v, r), which contains the data space
neighborhood gγ (v,wr), eq. (11). Hence, the proto-
type ordering contains information of both data density and
class distribution, whereby for high value β the latter term
becomes dominant. Otherwise, the data space neighbor-
hood gγ (v,wr) also triggers the label learning (12), which
is, of course, also dependent on the underlying learned pro-
totype distribution and ordering. Thus, a consistent order-
ing of the labels is obtained in FLSOM.

Hence, the evaluation of the similarities between the pro-
totype label vectors yields suggestions for the similarity
of classes, i.e. similar classes are represented by proto-
types in a local spatial area of the SOM lattice. In case
of overlapping class distributions the topographic process-
ing leads to prototypes with unclear decision, located be-
tween prototypes with clear vote. Further, if classes are

not distinguish-able, there will exist prototypes responsive
to those data which have class label vectors containing ap-
proximately the same degree of class membership for the
respective classes.

2.3 Functional norm and metric adaptation
In usual SOMs the data similarity measure ξ (v,wr) is usu-
ally chosen to be the squared Euclidean metric. However,
depending on task, this choice may be not optimum. There-
fore, other measure are also of interest, for example TAN-
IMOTO’s distance or correlation measures in taxonomy or
medicine/biology. Now we consider a parametrized dif-
ferentiable distance measure ξλ(v,w) with a parameter
vector λ =(λ1, . . . , λM ) with λi ≥ 0 and normalizationP

i λi = 1. The idea of metric adaptation or relevance
learning is to optimize the parameters λi with respect to
the classification task using a gradient descent [7]. Formal
derivation yields

∂EFLSOM
∂λl

= (1− β)
∂ESOM
∂λl

+ β
∂EFL
∂λl

(13)

We obtain

∂ESOM
∂λl

=
1

2

Z
P (v)

X
r

δs(v)r · ∂de (v, r)
∂λl

dv (14)

with

∂de (v, r)

∂λl
=
X
r0

hσ(r, r
0) · ∂ξ

λ(v,wr)

∂λl
(15)

and

∂EFL
∂λl

= − 1

4γ2

Z
P (v)

X
r

ce (v, r) · ∂ξ
λ(v,wr)

∂λl
dv

(16)
for the respective parameter adaptation.

In case of ξλ(v,w) being the scaled Euclidean metric

ξλ(v,w) =
X
i

λi(vi − wi)
2 , (17)

relevance learning ranks the input dimensions i according
to their relevance for the classification task at hand. Thus,
the corresponding learning rule for the relevance parame-
ters becomes

4λl = −�λ
1− β

2

X
r

hσ(s(v), r) · (vl − (wr)l)2 (18)

+�λ
β

4γ2

X
r

gγ(v,wr)(vl − (wr)l)2(x− yr)2

(subscript l denoting the component l of a vector) with
learning rate �λ > 0. This update is followed by normal-
ization to ensure λi ≥ 0 and

P
i λi = 1.

The Euclidean metric takes the input dimensions as in-
dependent. However, for functional data like spectra or
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time series, the data dimensions correspond to frequencies
or time points, respectively, and, therefore, they are spa-
tially correlated. LEE&VERLEYSEN proposed a functional
norm which takes these correlations implicitly into account
[13]. For a vectorial representation v of a function we as-
sume that between neighbored data dimensions there is a
constant frequency or time difference. Then, the functional
p-norm is defined as

Lfcp (v) =
Ã

DX
k=1

(Ak (v) +Bk (v))
p

! 1
p

(19)

with the terms

Ak (v) =

(
τ
2 |vk| if 0 ≤ vkvk−1

τ
2

v2k
|vk|+|vk−1| if 0 > vkvk−1

(20)

and

Bk (v) =

(
τ
2 |vk| if 0 ≤ vkvk+1

τ
2

v2k
|vk|+|vk+1| if 0 > vkvk+1

(21)

For p = 2 it induces the quadratic functional metric

δ (v,wr) =
³
Lfc2 (v−wr)

´2
. In analogy to the scaled

Euclidean metric we introduce the scaled quadratic func-
tional metric

δλ (v,wr) =
³
Lfc2 (Λ (v−wr))

´2
(22)

with Λ being a diagonal matrix with entries Λii = λi and
λi ≥ 0 and

P
i λi = 1. The derivative ∂δλ(v,wr)

∂wr
deter-

mines the learning rules and is obtained for the of the kth
dimension as:µ
∂δλ (v,wr)

∂wr

¶
k

= (2− Uk−1 − Uk+1) (Vk−1 + Vk+1)4k

(23)
with

Uk−1 =

(
0 if 0 ≤ 4k4k−1³

λk−14k−1
λk|4k|+λk−1|4k−1|

´2
if 0 > 4k4k−1

Uk+1 =

(
0 if 0 ≤ 4k4k+1³

λk+14k+1

λk|4k|+λk+1|4k+1|

´2
if 0 > 4k4k+1

Vk−1 =

(
1λk if 0 ≤ 4k4k−1

λk|4k|
λk|4k|+λk−1|4k−1| if 0 > 4k4k−1

Vk+1 =

(
1λk if 0 ≤ 4k4k+1

λk|4k|
λk|4k|+λk+1|4k+1| if 0 > 4k4k+1

and4k = vk − wk.

Further, the derivative of δλ (v,wr) with respect to the
metric parameters λk, which have to be plugged into the
gradient formulae (14) and (16) for metric adaptation, are

∂δλ (v,wr)

∂λk
=

½
ck |vk| if 0 ≤ vk−1vk

z (k, k − 1) |vk| if 0 > vk−1vk

+

½
ck |vk| if 0 ≤ vk+1vk

z (k, k + 1) |vk| if 0 > vk+1vk

with cj = Aj (λv) +Bj (λv) and

z (k, j) =
λ2kckv

2
k − cjv

2
jλ

2
j + 2λkck |vk| |vj |λj

(λk |vk|+ |vj |λj)2

.

3 HiT-MDS-2 for class label visual-
ization

Now we turn to use the learned class relations for visual-
ization. As described in Sec.2.2, the fuzzy label vectors yr
of the FLSOM reflect class similarities. For visualization
of class membership of data we suggest a color represen-
tation. Thereby, we make use of the learned class similar-
ities. Thus we look for a similarity based representation.
For this purpose, we map the prototype label vectors yr
onto color vectors cr here chosen as RGB-vectors repre-
senting the color intensities for the colors red, green and
blue. Yet, other color space representations are possible.

Similarity preserving mapping can be obtained by sev-
eral approaches, for example by three-dimensional SOM,
MDS or local linear embedding. Here we apply an ad-
vanced MDS scheme called HiT-MDS-2, which is more ro-
bust than usual MDS [19]. We briefly explain this method
in the following.

Generally, MDS refers to the optimization of N point
locations ti =

³
t1i , . . . , t

Ď
i

´
∈ RĎ in a target space in

such a way that their distance relationships faithfully re-
flect those of the associated original data vectors oi ∈
O ⊆ RD [3]. Obviously, in case of dimension reduction
with D > Ď such optimization will need to find a com-
promise solution. Let δi,k = δ (oi,ok) be the similarity
(distance) measure in the original data space O. Further, let
di,k = d (ti, tk) be the distance in the lower-dimensional
target space RĎ. If distances are Euclidean then the min-
imum of the canonical point-embedding stress function
J =

P
i<k (di,k − δi,k)

2 = min yields target configura-
tions which are equivalent to the linear projections of prin-
cipal component analysis (PCA). Although the benefit over
PCA is more flexibility in the choice of distance measures,
like many other metric MDS approaches, minimization of
the respective stress function suffers from the presence of
local minima. One avoidable reason for local minima is
a too stringent formulation of the stress function. In most
metric approaches, reconstructed distances are forced onto
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a pre-defined line, such as the one with unit slope for the
canonical stress, in the corresponding δi,k-vs.-di,k Shepard
plot. In contrast to that, HiT-MDS-2 maximizes the Pear-
son correlation r ∈ [−1; 1]

r =

P
q<k (δq,k − μδ) · (dq,k − μd)qP

q<k (δq,k − μδ)
2 ·
P

q<k (dq,k − μd)
2

=
B√
C · D

between entries of the source distances and the correspond-
ing target space distances by minimizing negative Fisher’s
Z0:

JZ0 = −
1

2
log

µ
a+ r

a− r

¶
!
= min, a = 1 + � (24)

Thereby, μδ and μd are the averaged distances in the data
and target space, respectively. Locations of points ti in tar-
get space are obtained by iterative gradient descent4tki =

−ε∂JZ0
∂tki

of step size ε on the stress function JZ0 using the
chain rule:

∂JZ0

∂r
= − a

r2 − a2
(25)

∂r

∂di,j
=

(δi,j − μδ) · D − (di,j − μd) · B
D ·
√
C · D

(26)

∂di,j
∂tki

=
2
¡
tki − tkj

¢
di,j

(for Euclidean target space)(27)

These equations yield a substantially improved conver-
gence over the old formulation of HiT-MDS proposed ear-
lier [19]. HiT-MDS-2 makes use of two non-critical para-
meters, the learning rate ε = 0.1 and the extra Z0 infinity-
preventer � = 0.001, which in Fisher’s original formula
would be zero. While, for plotting purposes, target dis-
tances are usually Euclidean, however, input distances can
be mere dissimilarities such as correlation.

A further remark is due to optimized computation of
MDS embedding in case of incremental adaptation: The
computational cost can be dramatically reduced using the
fact that for each iteration only a few distances are really
changed [19].

4 Application
We applied the FLSOM for classification of hyper spec-
tral images in satellite remote sensing image analysis. Air-
borne and satellite-borne remote sensing spectral images
consist of an array of multi-dimensional vectors (spectra)
assigned to particular spatial regions (pixel locations) re-
flecting the response of a spectral sensor at various wave-
lengths. A spectrum provides a clue to the surface material
within the respective surface element. The utilization of
these spectra includes areas such as mineral exploration,

land use, forestry, ecosystem management, assessment of
natural hazards, water resources, environmental contami-
nation, biomass and productivity; and many other activities
of economic significance. The number of applications has
dramatically increased in the past years with the advent of
imaging spectrometers such as AVIRIS of NASA/JPL. [22]

Imaging spectrometers sample a spectral window con-
tiguously with very narrow, 10 − 20 nm bandpasses [18].
Depending on the wavelength resolution and the width of
the wavelength window the dimensionality of the spectra
can as high as several hundred [6].

Spectral images can be formally described as a ma-
trix S = v(x,y), where v(x,y) ∈ RDV is the vector of
spectral information associated with pixel location (x, y).
The elements v(x,y)i , i = 1 . . .DV of spectrum v(x,y) re-
flect the responses of a spectral sensor at a suite of wave-
lengths [4]. The spectrum is a characteristic fingerprint
pattern that identifies the surface material within the area
defined by pixel (x, y). The individual 2-dimensional im-
age Si = vi

(x,y) at wavelength i is called the ith image
band. The data space V spanned by Visible-Near Infrared
reflectance spectra is [0 − noise, U + noise]DV ⊆ RDV

where U > 0 represents an upper limit of the measured
scaled reflectivity and noise is the maximum value of noise
across all spectral channels and image pixels. The data den-
sity P (V)may vary strongly within this space. Sections of
the data space can be very densely populated while other
parts may be extremely sparse, depending on the materials
in the scene and on the spectral bandpasses of the sensor
[16].

In addition to dimensionality and volume, other factors,
specific to remote sensing, can make the analyses of hy-
perspectral images even harder. For example, given the
richness of data structures, the goal is to separate many
cover classes, however, surface materials that are signifi-
cantly different for an application may be distinguished by
very subtle differences in their spectral patterns. The pixels
can be mixed, which means that several different materials
may contribute to the spectral signature associated with one
pixel. Training data may be scarce for some classes, and
classes may be represented very unevenly. All the above
difficulties motivate research into advanced and novel ap-
proaches.

A Visible-Near Infrared (0.4 − 2.5 μm), 224-band, 20
m/pixel AVIRIS image of the Lunar Crater Volcanic Field
(LCVF), Nevada, U.S.A., was analyzed in order to study
FLSOM performance for high-dimensional remote sensing
spectral imagery. (AVIRIS is the Airborne Visible-Near
Infrared Imaging Spectrometer, developed at NASA/Jet
Propulsion Laboratory.

Figure 1 shows a natural color composite of the LCVF
with labels marking the locations of 23 different surface
cover types of interest. This 10 × 12 km2 area contains,
among other materials, volcanic cinder cones (class A,
reddest peaks) and weathered derivatives thereof such as
ferric oxide rich soils (L, M, W), basalt flows of various
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ages (F, G, I), a dry lake divided into two halves of sandy
(D) and clayey composition (E); a small rhyolitic outcrop
(B); and some vegetation at the lower left corner (J), and
along washes (C). Alluvial material (H), dry (N,O,P,U)
and wet (Q,R,S,T) playa outwash with sediments of var-
ious clay contents as well as other sediments (V) in de-
pressions of the mountain slopes, and basalt cobble stones
strewn around the playa (K) form a challenging series of
spectral signatures for pattern recognition (see in [16]). A
long, NW-SE trending scarp, straddled by the label G, bor-
ders the vegetated area. Since this color composite only
contains information from three selected image bands (one
Red, one Green, and one Blue), many of the cover type
variations remain undistinguished. After atmospheric cor-
rection and removal of excessively noisy bands (saturated
water bands and overlapping detector channels), 194 im-
age bands remained from the original 224, i.e. DV = 194.
The 23 geologically relevant classes indicated in Figure 1
represent a great variety of surface covers in terms of spa-
tial extent, the similarity of spectral signatures [16], and the
number of available training samples N = 931.

Figure 1, middle panel, visualizes the best classification,
with 92% overall image accuracy, produced by an SOM-
MLP-hybrid network [15]. This network first learns in an
unsupervised mode the hidden SOM layer. After the SOM
convergence, the output layer is allowed to learn class la-
bels via a Widrow-Hoff learning rule. Training samples for
the supervised classifications were selected based on field
knowledge.

In a second study a generalized learning vector quanti-
zation scheme (GRLVQ, [7]) was applied [14]. The over-
all number of prototypes was chosen as 115, i.e. 5 proto-
types for each class. The achieved accuracy for the avail-
able training samples is 97.0%, whereby a scaled Euclid-
ean metric was applied togehter with relevance learning for
inproved performance.

To be comparable to the latter approach, the FLSOM lat-
tice structure was chosen as 112 prototypes in a 16×7 grid.
The grid edge length ratio was determined using the grow-
ing SOM [2]. The final balancing parameter was β = 0.85.
The topography of the FLSOM is quite good giving a topo-
graphic product value nearby zero [1]. Small violations
were detected by the topographic function [21]. The FL-
SOM accuracy for training samples (majority vote) is ob-
tained as 95.3% for the Euclidean metric and 95.7% for
the functional metric. The reduced accuracy in compari-
son to GRLVQ is due to the β-value, which means a non-
vanishing term of unsupervised learning in the cost func-
tion. However, further increasing of β would lead to lost
of the neighborhood regularization, which is needed for
detecting class similarities based on topography properties
(see Sec.2.2). In fact, the resulted distribution of the label
vectors on the grid shows a clear ordering and smooth tran-
sitions, whereby classes with similar meaning are grouped
together (Figure 2). This result can be evaluated by valid-
ity measures assessing cluster partitions in fuzzy cluster-

ing. There exist a broad range of indices [17]. Roughly
speaking, most of the measures take mainly the compact-
ness and the separability of clusters for judgement into ac-
count. Taking the class label distribution as ’cluster distri-
bution’, we can adapt them to the specific task of assessing
the quality of the label distribution in the FLSOM-grid.

Here we used the validity index Vm provided in [17]:

Vm = Jm (A,Y)−Km (A,Y) (28)

with

Jm (A,Y) =
X
r∈A

CX
i=1

¡
yir
¢m · dA (r, ci) (29)

is the cost function of fuzzy-c-means assessing the com-
pactness of the clusters. Thereby, yr =

¡
y1r , . . . , y

C
r

¢
are

the label vectors of the prototypes, and ci is the center lo-
cation of class i. It is defined as the lattice location of the
label with the highest class assignment

ci = argmax
r∈A

¡
yir
¢

(30)

dA is the Euclidean distance taken the grid indices as loca-
tions.

The second term Sm (A,Y) in (28) is the separation in-
dex

Sm (A,Y) =
1

C ·#A
X
r∈A

CX
i=1

¡
yir
¢m · dA (r, c̄) (31)

judging the separability of clusters with c̄ = 1
C

PC
i=1 c be-

ing here the mean of all grid locations of class centers ci.
The obtained label distribution in the application (see

Figure 2) shows a clearly improved validity Vm index com-
pared to labeling achieved by usual SOM-learning with
subsequent post-labeling. Both terms Jm and Sm are inde-
pentently optimized such that both covered features, com-
pactness and separability, show improved performance for
FLSOM leading to better interpretability.

Comparing the SOM-MLP-hybrid ANN visualization
with the visualization obtained by FLSOM with subsequent
HiT-MDS-2 color mapping (Figure 1, bottom), the first
observation is the striking correspondence. Yet, the opti-
mized coloring by class label mapping using HiT-MDS-2,
which takes the class similarities detected by FLSOM into
account (see Figure 2), leads to a more smoothed visual-
ization, whereby similar material are represented by simi-
lar colors. For example, prototypes responsible for similar
materials (wet playa - classes Q, R, S, T; alluvium - classes
C, H, M; dry wash - classes N, O , P) are in small grid areas
and the respective class label show a continuous transition,
which generates similar color representation in visualiza-
tion. Evaluation of further refinements are left to future
work.
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5 Conclusion
We propose an extension of SOMs for fuzzy classification.
The approach allows the detection of class similarities. For
this purpose, the neighborhood cooperativnes of SOMs is
used and transferred also to the supervised part of training
for classification learning. The achieved similarity infor-
mation can be used for better visualization of classification
results. We demonstrate the method for hyper-spectral data
classification and visualization in satellite remote sensing
image analysis.
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Figure 1: top - natural color composite of the LCVF with
labels marking the locations of 23 different surface cover
types (see text); middle - color representation of the clas-
sification result of the SOM-MLP-hyprid network; bottom
- similarity based color representation of the classification
result of the FLSOM approach using HiT-MDS-2 mapping.

Figure 2: Visualization of the class label distribution within
the FLSOM lattice. A clear ordering can be observed,
which is the convergence of the class similarity learning.
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