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Abstract— We present a classifier algorithm thattraining algorithm, optimization of classification accuracy
approximates the decision surface of labeled data by kg adapting the voting weights of the classifiers in the com-
patchwork of separating hyperplanes. The hyperplanes argttee, and the model selection framework. Applications to
arranged in a way inspired by how Self-Organizing Map®enchmark supervised learning data sets are given in Sec-
are trained. We take advantage of the fact that the bountien 5, as well as comparisons to state-of-the-art classifiers.
aries can often be approximated by linear ones connect&ection 6 summarizes our work.
by a low-dimensional nonlinear manifold. The resulting
classifier allows for a voting scheme that averages over
neighboring hyperplanes. Our algorithm is computation?  Related \Work
ally efficient both in terms of training and classification.

Further, we present a model selection framework for eSrhere has been a lot of effort in the past decades to de-
timation of the paratmeters of the classification boundary;gn piecewise linear classifiers, starting with the work of
and show results for artificial and real-world data sets. Sklansky [8]. In this particular approach, a number of hy-
perplanes is created and the feature space is split into parti-
tions. However, the algorithm has severe complexity prob-
1 Introduction lems, as the number of partitions grows exponentially with
the number of hyperplanes. Other similar approches in-

In this paper, we present a neural classifier algorithm fdfude Learning Vector Quantization [4].

two-class problems that aims at approximating decision A 1azy learning algorithm that is comparable to our ap-
boundaries locally by multiple linear separating hyperProach is proposed in [2], where for each pattetraining
planes. This approximation is performed by placing a regs@mples from its vicinity are selected. A classifier is trained
resentative that describes the decision boundary in its vici@n this subset of the data. The results are good in terms of
ity where the data sample is sufficiently dense. Our classiccuracy, but this approach is computationally expensive,
fier, which we call Decision Manifold, subjects the shap@s a new classifier has to be trained with every pattern to
of the decision boundary to topological constraints, simibe classified. Our algorithm is similar in terms of accuracy,
lar to the output space topology of Self-Organizing Mapgut is not a lazy learner as it takes advantage of local repre-
The local classifiers are moved to their appropriate posgentatives that cover an area of the feature space, thus not
tions along the decision boundaries. We further preseftiffering from these performance issues.

a model selection scheme in order to estimate the correctAs our classifier consists of several local classifiers that
topology of the decision surface. As we show in the expeperform the actual classification task by a voting scheme,
iments section, our classifier is comparable in performang&nsembles of classifiers are related to our technique. Mix-
to modern supervised learning algorithms. Apart from fagures of local experts [6] train a committee of multi-layer
training, the advantage of our method lies in the exploitgeerceptrons in a competitive learning approach where each
tion of the classifier topology, which is used during trainingILP specializes on a region of the feature space. The clas-
to align the classifiers to achieve an ordered representatisification is performed by a selector that assigns the sam-
of the decision boundary, and to avoid overfitting and locaples to the local experts.

minima in the placement of the local classifiers. In the last Our method relies heavily on the concepts of topology
stage of the training phase, when the positions of the indand local linear approximation. Manifold learning meth-
vidual local classifiers have converged, the topology is usemtls, such as ISOMAP [9] and Local Linear Embedding [7],
to fine-tune classification performance by determination dbllow a similar approach, but are mainly used for non-
the optimal voting weights. The remainder of the papéinear dimensionality reduction and projection. Our goal is
is organized as follows: In Section 2, we discuss relatefh approximate the decision boundaries rather than the data
techniques. In Section 3, we describe essential concemisints, but we use similar techniques like local approxima-
that our technique is based upon. Section 4 outlines thi®n as manifold learning.



3 Elementary Concepts The next essential concept is linear classification. The
Decision Manifold method is designed to work with any
In this section, we briefly outline several concepts that oWind of classifier that results in a single separating hyper-
algorithm is based upon and which will serve as buildinglane that can be represented as a vector in homogenous
blocks. The first one is the Batch SOM algorithm for uncoordinates. For the sake of brevity and simplicity, we
supervised learning, for the details of which beyond thgmit our discussion to the Moore-Penrose Pseudoinverse
material presented here please refer to [3]. The SOM {#1PI). Other than in the unsupervised setting, data sam-
computed by presenting an unlabeled data set consistingiésx; < i are labeled with binary clags e {-1,+1}.
vectorsx; € R to M prototype vectorsn; € R”, that The whole data set is written as matix where rows cor-
are usually aligned along a two-dimensional grid topologytespond to patterns and columns to features, and a vector
The proptotype vectomn; are updated fof” epochs, such of labelsy. The MPI computes the separating hyperplane
that they both represent the original data in a vector quafh a single step:
tization sense and preserve the grid topology. In this paper,
we use output spaces of arbitrary dimensions rather than wwpl(X,y) = (XTX)"'X Ty (5)
only two dimensional ones, which are most suitable for
visualization purposes [5]. We consid@®-dimensional After training the classifier, we obtain the normal veétor
topologies, where the prototype vectors are aligned in af(X,y) to the separating hyperplane pointing in the di-
equidistant and rectangular way. We refer to such a topalection of classt+1. Using this notation, classification of
ogy as{d; x dy x -+ X don}, wheredy, ..., dsy are the datumz is performed by estimating labg!
number of nodes per output space axis. The pairwise dis-Finally, some considerations on the topology and shape
tances in output space between the unit associatedmjth of decision surfaces of general classifiers are given. Every
andm; are stored in the symmetric topology matuk classification algorithm explicitly or implicitly performs an
In order to preserve this topology, the neighborhood keestimation of such a decision surface which partitions the
nel K is introduced that determines the mutual influencéeature space into disjoint regions that are assigned a label.
of two prototype vectors onto each other based on thellathematically, a decision surface is a hypersurface (i.e. of
output space distance. The most common choice for tldgmensionD — 1, and of arbitrary shape). We assume this
neighborhood kernel is the Gaussian function, defined acision boundary to consist of a finite number of topolog-
K, (i,j) = exp{ — %} whereo(t) is a monoto- ical manifolds, thus the possibly non-contiguous hypersur-
nously decreasing function that defines the width of théace can be decomposed into contiguous subsets. Bounded
kernel. Other than the sequential version, the Batch SOf@pological manifolds, i.e. ones that do not extend to in-
algorithm does not depend on the ordering of the data safRity, can be categorized according to their dimensionality.
ples, and does not require a learning rate paranagter It For example, a line segment is topologically equivalent to
is computed by first assigning the samples to their closegf arc of a circle since both are one-dimensional manifolds.

prototype vector, and computing centroids for each partFurther, a topological manifold has a surface that is locally
tion: Euclidean and can thus be approximated by a patchwork of

hyperplanes.

I(x) = argje{rf},i,?wj} e — my | @ Fig. 1(a) shows a possible decision boundary in three di-
iy . mensions of the forny(z,y) = 1/z. Fig. 1(b) shows a
p= XNI(x;) = 2 _ oo iy
S; {Z|1x € XA I(x:) =j} 2) linear approximation of this surface by three hyperplanes
n — — X 3) aligned along a one-dimensional manifold, i.e. a curve.
] 1 ( ) . . .
6] xiEXe, The approximation shows one important concept that we

_ ) exploit: As the function value is constant along the
where| - || denotes Euclidean distance, af(d) represents cqqrdinate, the patchwork can be aligned along a one-
the index of the prototype vector the data paints as-  gimensional manifold. There is no need to introduce addi-
signed to. Functiod(-) together with the prototype vectors 4jg4 hyperplanes along thecoordinate as this is already
defings a Voronoi tessellation of the feature space. The s&vered by the linearity of the hyperplanes that extend to
of indices of samples mapped to prototypg is denoted nfinity in the y direction. We can thus represent the two-
as®;. For referring to the subset of samples belonging tgimensional decision manifold by a one-dimensional topol-
prototype vectoyj, we write Xe . | - | denotes the cardi- gy along which the hyperplanes are patched together. If
nality of a set, i.e. in this case the number of data pointg,air number is increased, the manifold can be approx-
assigned to a prototype vectar; is the center of the data jmated at arbitrary precision. In Section 5, our experi-
points assigned to nodeThe update step of epo¢is per-  ments show that the required topology dimension is usu-
formed by calculating the new prototype vectans with 41y very much lower than the feature space dimension.
the Batch SOM training algorithm: Fig. 1(b) also gives an outline of the goal of our method:

L 18k Koy (K, 5) -y

= : 4) IHomogeneous coordinates, which include a bias-term in the first co-
21]:1:1 |&k| - Ko (K, j) ordinate of the vector are denoted by a tilde.
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Figure 1: (a) Decision hypersurface in 3-dimensional space, (b) approximation by 3 local hyperplanes aligned along a
1-dimensional manifold, (c) Graph éft x 3 x 2} Topology, (d) training of a linear classifier; thin lines indicate borders

of Voronoi set, “+” and “-” denote samples, “A’ center point “B” separating hyperplane, “C” normat, “D” projected
center:c’, (e) smoothing over neighborhood topology: upper part is before, the lower part after the smoothing step

A set of points that represent the center of a classifier hyAlgorithm 1 Training Algorithm
perplane (square markers) and their topologically correcti: randomly initializec; andv;
order (dashed lines). Following this motivation, the algo- 2: for t = 1 to 7" do
rithm we describe in the next section aims to estimate ag:  for j = 1to M do
local approximation of the decision hypersurface with the 4 find set of sample® ; assigned to classifigr
following characteristics: 5: compute weighty;
if w; > 0then

compute separating hyperplafig

compute projectior’; of center point; to w;

compute normai’; from w;

end if

end for
12:  compute neve; according to4, ¢/, ando (t)
Our classifier consists of a set of local linear classifiers thats:  compute new; according ta4, v/, ando (¢)
are subjected to a given topology. We refer to the clast4: end for
sifier's topology as the number of local linear classifiersls: computesing
along the axis in each dimension; the topology of the clas-
sifier in Fig. 1(b) would bg3}. An example of a topology
with {4 x 3x 2} local classifiers is shown in Fig. 1(c) where ) ) .
each dot at the intersections of the grid’s edges represeffié representatives; in the adequate positions and to let
a local linear classifier. These are similar to the units of ¥; Point in the correct direction for classification. When
Self-Organizing Map of according dimensionality, i.e. infraining has finished, the Decision I\_/Iamfold. is described
this case a 3-dimensional SOM. However, the major diffef2y the tuple{C’, V, orinai, A}, where A is the given topol-
ence to SOMs is that prototype vectors are placed whef&Y: C andV are the sets of representatives and classifi-
data density is high, and our method places hyperplanggtion vectors, respectively, angha is the optimal classi-

An example of a trained classifier can be seen in Fig. 2(g).

The thin lines delimit the areas where samples are assigned
4 Decision Manifolds to the respective classifier, and thick lines and arrows rep-

resent the separating hyperplane. The dashed lines refer

For supervised learning the training samptesre each to the topology of the Decision Manifold. Note that the

associated with a class labgl € {—1,1}. The Decision connected classifiers are actually next to each other. This
Manifold consists of\/ local classifiers, each specified byordering is induced by the imposed one-dimensional topol-
a pair of a representativg € R” and a classification vec- ogy in this example, which will be explained in the course
tor v; € RP that is orthogonal to the decision hyperplaneof this section. We further provide an iterative algorithm
of the local classifier. Botle; andv; are initialized ran- that aims at placing the representatives in a way such that
domly. c; determines the position of the classifier in feathe predefined topology of the classifiers is preserved, i.e.
ture space, whilev; is relevant for performing the clas- that neighboring classifiers are responsible for neighbor-
sification. Samples to be classified are assigned to theng areas of the data space. The adjacency matrikat
closest representative and classified by the local hyperpladefines the topology, and thus the shape of the decision
defined byv;. The goal of the training algorithm is to put boundary, is assumed to be given as a parameter. Select-

e The decision surface is estimated reliably where datan
density is sufficiently high, otherwise extrapolation is '
used by extending the decision hyperplanes to infinity.8:

e The decision surface can be approximated locally byg'.
linear classifiers that are ordered along a topology tha]to:
is as low-dimensional as possible. L




ing a suitable topology will be explained in greater detaithat represent the borders of the Voronoi region, the sepa-
later in this section. rating hyperplane obtained by linear classification is shown
Training is performed for a predefined number of epochas a dashed line (“B”). The centroit;, (“A”) is projected
T. Our experiments have shown that this parameter is noatong the normal (“C”) to its position’; (“D”).
critical to the performance of our classifier, and we assume At this point, the topology that puts the representatives
T = 5 in the rest of this paper. An outline of the traininginto relation comes into play. As the local classifiers should
algorithm is given in Algorithm 1, and we will refer to the be ordered such that they resemble a continuous decision
line numbers when explaining each step. In the first stefurface, a smoothing step is performed that takes care of
of each epoch, the data samples are assigned to the closdering the local representatives to obey the topology in-
est local classifier representative (line 4), as in Equs. (Huced by matrix4. This step is very similar to the update
and (2). Again, the set of indices of samples mapped to thocess used in the training of SOMs. We use the neigh-
7™ local classifier is denoted a;, and the sets of sam- borhood kernel weighted by the number of samples in each
ples and labels assigned to it&s; andys,, respectively. Voronoi partition to calculate smoothed versions along the
Note that other than in the case of the unsupervised SONbpology of both the classification vectovs and repre-
the representatives; are not true prototype vectors placedsentativesc;. The idea behind this is making them more
where data density is high, but rather in positions whersimilar to their topological neighbors in order to achieve
there is a transition between two neighboring areas of dik smooth representation of the decision boundary and to
ferent classes, which will be explained in detail in the nexaivoid overfitting. Using a formula similar to the Batch
paragraphs. Further, we are interested in the centec§ ~ SOM training defined in Equ. (4), the updated local clas-
the partitions, which do not necessarily coincide wdth sifiers (lines 12, 13) are
Once all the samples have been assigned, a linear classi-

fier is tra i - - S Kt (o) -5
ier is trained for each partition to obtain a separating hy- c. = =k=1 g\ k. (8)
perplane. Since this can only be performed if samples of ! Zf:[:l Koy (K, J) - x
both classes are present, and the number of training sam- SM K (k) vV
ples will be of interest in a later step, we compute the v, = ’“:]b ()1 - k 9)
weighting factor (line 5) as follows: 2 k=1 Koy (F: 3) -
. The new representatives and classification vectoss; are
Vi = { i)Gjl gté;rlwfsgej) AHLEYS;) (6) derived from the preliminary versiorg andv’; defined in
Equ. (7) and subjected to the kernel smoothing. Further,

This means that classifier positions that are located in a4 2ndv; are weighted according to topological distance

eas of high data density and contain data samples of bdtfd Py the number of data poinis they represent. Thus,
classes will receive higher weights. 4f > 0, we train a a local classifier that represents many data points will pull

linear classifier (line 7) on the subskt; . from which we its neighbor that represents relatively few samples in its di-
J

can extract the separating hyperplang Xs ., ys, ). This rection. Also, an effect known in vector quantization as
hyperplane must pass through the conve>z huIIJof the traiﬁnagni_ficatipn factors [10] occurs that co_ncentrates repre-
ing samplesXs . and thus partly lies within the Voronoi sentatives in dense areas. During the first few epochs, a
region of repreéentative» We are interested in updating high value ofo ensures that the local classifiers are aligned
the representative; such that it lies on the separating hy_a_c_cordlng tP t.he topology. As _de_cllnes, t_h_e local Cl"’_‘s'
perplane and does not drastically change the Voronoi pa}l_flers specialize and reach their final positions. The influ-
tition for consecutive epochs. As all the points that lie orf"ce _throughto_pological proximity thus vanishes. _Fig. 1(e)
the hyperplane are equivalent to describe it along with tHe¥Plains how this smoothing happens over a possibly over-
normal vector, we compute a new preliminary representér-a'ned situation, and shows how the representatives and

tive C;_ that lies on the hyperplane by projection of the dat&la;sific_ation vectors are realigned to be more sim_ilar. to
centroidn; and store the information for classification intheir neighbors. After this step, the current epoch is fin-

the normalized vectov: ished.
J Fig. 2(a)—(h) shows an example of training with 5 local
, , W classifiers with a one-dimensional topology, referred to as
¢j = mw, (n;), v = [w] () " {5}, on a simple non-linearly separable data set. It consists

of 200 samples that are distributed along a sine-wave with
whererg (-) denotes orthogonal projection onto the hyperGaussian noise, where the class “+” is offset by a small
plane specified byv. This projection ensures that the rep-vertical margin. In the figures, data points are represented
resentative is placed on the decision boundary and is tle “+” and “0”. The classification vectoss; are shown as
point closest to the centroid of the Voronoi partition. Athe arrows pointing to the direction of the “+” class, and
schematic overview of this update step (from partitioninghe hyperplanes as thick, solid lines. The positions of the
in Voronoi sets to calculation of; andv’) is shown in representatives; are denoted as small squares where hy-
Fig. 1(d). For the set of points delimited by the thin linegperplane and classification vector intersect.The topology of



(b) (© (d) (e)

FHE R B e
B R AU B e
B R AU B R
B R AR B e
R RS R R R e

\( !

©00000000000000000 000000000000000000
©00000000000000000 ©00000000000000000
000000000000000000 000000000000000000

® () (h) @ )

Figure 2: Training algorithm on non-linearly separable data set: (a) after initialization, (b)—(f)&#&# epoch, (g) after
training (without data samples), (h) classification results and Bayes optimal decision boundary, (i) only one classifier, (j)
classification with one classifier

the local classifiers is visualized by dashed lines connectiig our current experiments running onla&0 GHz com-
adjacent local classifiers (i.e. whefg; = 1). In Fig. 2(a), puter and a Matlab implementation of the algorithm, the
the randomly initialized Decision Manifold is shown. Af- training duration for a data set with = 400 andD = 50,

ter the first training epoch, depicted in Fig. 2(b), the locahnd training with?" = 5, M = 20 is less than a second.
classifiers are arranged in a more orderly fashion as a re-When the local classifiers are in their final positions, the
sult of smoothing according to Equ. (8), yet do not classifyraining algorithm enters its last phase where the classifica-
well after this iteration. Figs. 2(c)—(e) show the consecutiveon performance is fine-tuned on the training data set. In
stages of training as, the parameter controlling the mutualits most simple form, classification is performed by assign-
influence between topological neighbors, is decreased. They a data sample to its closest linear classifier in the same
purpose of the earlier epochs is to roughly align the repravay as during training, and then classifying it according to
sentatives along the topology, while the later epochs are fis position relative to the hyperplane, and is defined as:
fine-tuning the individual areas of each classifier. The fin-

ished Decision Manifold is shown in Figs. 2(f),(g) with and §(x) = sign((x — crx) | Vix)) (10)
without the data points. It can be seen in Fig. 2(h), which

shows the Bayes decision boundary as a thick line alorfy MOré sophisticated approach takes advantage of the
with the decisions over the whole feature space, that tfi8P°logy: Since neighboring representatives are expected

optimal decision boundary has been approximated very ri® form a smooth decision boundary, voting of the local
liably. Figs. 2(i),(j) show a trained Decision Manifold of pIaSS|f|er ensemp!e according to the t.opologlcal proxim-
topology {1} that consists of only a single classifier, andty of every _cla§§|f|er tq the representative closest toe.
is thus equivalent to performing a simple linear classificaC!(x)» can significantly increase accuracy:
tion. This topology is not capable of approximating the de- v
cision boundary sufficiently. Selecting the (unknown) cor- " o N A
rect topology in the first place is thus very important and y(x,0) = S|gn( ZlK"(I(x)’J) 'y(x)) (11)
will be dealt with later in this section. =

The complexity of the training algorithm can be cal-whereos is the smoothing width, with higher values increas-
culated as the sum of the sample assignment to reprieg the influence of distant classifiers in terms of the topol-
sentativesO(N - M), training of theM linear classifiers ogy. Effectively, the datunx is classified by all the hyper-
O(M -O;(N)), whereO, denotes the classifier complexity, planes, and the final decision is performed as weighted vot-
and the complexity of the SOM update st@pM/2). ForT  ing where neighboring classifiers receive a higher weight.
epochs, this results i@(T - (N - M + M - O;(N) + M?)).  In the last step of the algorithm (line 15), the training set
The training algorithm can be implemented very efficientlyaccuracy (the percentage of correctly classified samples) of



In Fig. 3(b), both classes are normally distributed with
the same center, but class “+” has a higher variance. In
this case, there is considerable overlap between in all re-
gions. The Bayes optimal boundary runs along a circle
where the class conditional probability density functions
intersect. As Fig. 3(b) shows, our algorithm is capable of
finding this border. Within this circle, there will likely be
some misclassifications of class “+”, but class “0” is still
more common there.

In a related example shown in Fig. 3(c), class “0” is dis-
tributed uniformly on a circle, and class “+” is normally
distributed around its center. A Bayes optimal classifier
would assign label “0” to any point on the circle and “+”
otherwise. The Decision Manifold consists of 5 local clas-
sifiers along a one-dimensional bounded topology. This is
a mismatch to the topology of the actual decision boundary,
which is also one-dimensional but circular. However, most
of the classification boundary can still be captured. Due
to the sparsity of samples outside the circle, the decision
boundary does not identify these samples correctly as “+".

Fig. 3(d) shows the results for a data set where the Bayes
decision boundary is not contiguous. The decision hyper-
surface is split into two linear manifolds (parallel lines).

1{* . s«%g% B o{ After training of 6 local classifiers with a one-dimensional
NG topology, the result shows that our method is capable of
/\j Hdso0 °q dealing with this problem. It could have been solved with
B oo;\%*oo % j; A only 2 linear classifiers, but we chose it as a demonstration
IR IR of how the representatives are aligned in case of a topol-
% S0 %_? o ogy breach. Further, we want to demonstrate that the De-
SN cision Manifolds’ performance does not deteriorate in case

of over-specification in terms of the number of classifiers.
In Fig. 3(e), separation of the XOR-problem is demon-
Figure 3: Artificial Datasets: (a) quadratic decision gurStrated with four local classifiers. Here, the feature space

face, (b) 2 Gaussians with different variances, (c) ring an§ split along the diagonals, and the neighborhood relations
Gaussian, (d) 2 linear separations, (€) XOR are disregarded for classification, i@y iS close to zero
and no voting is performed.
It has been mentioned above that selection of a suitable
the classifier is maximized with respectaoln our experi- topology is critical fof the performance of our.allgonthm, as
the topology constrains the shape of the decision boundary.

ments, optimizingr was responsible for a gain in accuracyHere we present a scheme for topology estimation, and a

of up to 3%. This is done by sampling several values of . : o
0 < o < M and we set _model sglect_lon approach th_at trains several Decision Man-
ifolds with different topologies and selects the best one.
ofinal(C, V, X, y) = argmaxacc(C,V, X,y,o) (12) Training over a number of topologies can be afforded due
7 to the computational inexpensiveness of training a Decision
Next, we discuss five data sets representing typical noManifold. The topology connecting the representatives can
linearly separable supervised learning problems, each cdmave at most dimensio® — 1. If we assume that each
sisting of 200 samples. They are shown in Fig. 3 togethexxis of the topology grid contains 5 local classifiers, and
with the trained Decision Manifold. Note that the dashedhe dimension of the data set is 50, this would result in
lines again do not determine the classification boundaries!® classifiers, which clearly can not be handled. As the
but indicate the topological neighborhood of the local clasdimension of the topology is likely to be much lower, we
sifiers. have to perform a reasonable estimate of the intrinsic di-
The first example, shown in Fig. 3(a), consists of sammensionality of the data set. This task has been addressed
ples divided by a boundary along a quadratic polynomiapreviously [1], but we apply a simple PCA-guided scheme.
The Bayes decision boundary is nonlinear in this case. From the data seX, we extract the ordered set of eigenval-
local linear separators are trained, resulting in the ordereas)\y, ..., A\p, which is normalized to add up to one. Note
approximation visualized in the figure. that we do not use PCA for dimensionality reduction of the



Table 1: Eigenvalues of PCA, Dimensionality estimation for the topology connecting the local classifiers

i Ai Topology fordmax = ¢ Topology without 0,1| Topology Graph
1] 02618 {10} {10}

2 | 0.2164 {5 x 4} {5 x 4} Ssss

3| 0.1287 {4 x 3 x2} {4 x 3 x2} ﬁ

4 | 0.1094 {3x3x1x1} {3 x 3} 11

5| 0.0953 {3x2x1x1x1} {3 x 2} ]

6 | 0.0853 {2x2x1x1x1x0} not valid

7100525 {2x2x1x1x1x0x0} not valid

810.0506| {2x2x1x1x0x0x0x0} not valid

data set, just for estimation of the topology. For the approx-

Table 2: Model Selection

imate desired numbern of classifiers distributed along all
discrete axes, we construct the topology as follows:

Training Test Validation

m-)\i

Classifier

Validation Set
Accuracy

Estimate Test Set

Topology c Accuracy

(13)

0; = {de%J )

j=1
whered, is the number of classifiers along the rectangular
topology’si" axis, and|-| denotes rounding down to the
closest integer. The topology is thén; x -« x ?4,..}-
dmax 1S the dimension of the topology, at most the data set
dimensionD. 0; = 1 can be omitted, since an axis that
only holds one discrete coordinate does not provide any in-
formation, and if anyp; = 0, the topology is not valid.

0.27 87 %

1.19 88 %

Best Model | 85 %

*—eo—o 0.66 82 %

We iteratively construct the topology as a ratio of the up
to D eigenvalues\; : Ay : --- : Ag,,. FOr example, the
Pima Indian Diabetes data set, which will be discussed in
the next section, consists of 8 variables. Its ordered eigen-e
values aré).26,0.21,0.12,0.10,0.09, 0.08, 0.05, 0.05; for

m = 10 the candidate topologies are shown in Table 1. We e
repeat this procedure by iterating = 1...10 and obtain .
a set of 17 distinct topologies (the smallest of whick1s,

the largestig4 x 3 x 2}). We chose 10 as a reasonable up-
per limit for m as real-world problems rarely require large
numbers of separating hyperplanes. For estimation of thee
performance of the Decision Manifold with each topology,
we split X into training and test set. After each classifier
has been trainedyiny is estimated on the training set. The e
resulting Decision Manifolds are then evaluated on the test
set, and the best model is selected.

For estimation of the generalization accuracy, we per-
form 10-fold cross-validation. The remaining 90 % of the
data set are divided into training and test set by the rat@
80 to 20. The topologies for the models are then estimated
by the PCA approach described in the previous paragrap
and the models are trained, angy is estimated. The re- |
sulting classifiers are then evaluated on the test set, and i

The algorithm is a stochastic supervised learning
method for two-class problems.

Computation is very efficient.

The topology induced by adjacency matrixdefines
the ordering and alignment of the local classifiers; it
is also exploited for optimizing classification accuracy
by a weighted voting scheme.

As the topology of the decision hypersurface is un-
known, we apply a heuristic model selection that
trains several classifiers with different topologies.
The classifier performs well in case of multiple non-
contiguous decision surfaces and non-linear classifi-
cation problems such as XOR.

Experimental Results

ke experiments are performed on 7 supervised learning
benchmark data sets taken from the UCI Machine Learn-
g Repository: Bupa Liver Disorders, Pima Indian Dia-

best model is selected for validation, resulting in the fina?€t€S, Spam, lonosphere, Statlog Heart Disease, Sonar, and

accuracy measurement. This Training-Test-Validation ap2talog Gérman Credit data bases. In case of categorical
proach is summarized in Table 2 for one fold. features, 1-to-N encoding has been applied, otherwise the

To summarize the methodological part of this paper, wdata has been normalized with a zero-mean-unit-variance
recapitulate the properties of our method: 2Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.




Table 3: Comparison of average 10-fold cross-validation error (in %)

Data | Samples| Dim. | Topol. | Dec. Mf. | lin. SVM | pol. SVM | RBF SVM | R.F. | Dec. Tr. | k-NN
Bupa 345 6 {5 x 2} 29.4 29.6 40.0 30.1 27.2 29.3 33.9
Pima 768 8 {3 x2} 20.9 23.3 25.3 23.0 23.3 25.5 25.0
Spam| 4601 57 {7} 1.7 7.2 21.7 6.8 4.7 8.6 9.2
lono 351 34 {3} 12.8 11.7 12.8 6.0 6.3 14.0 14.8
Heart 270 13 {4} 18.5 17.0 17.8 18.5 20.0 19.6 18.1
Sonar| 208 60 | {3x3} 14.3 26.4 18.3 16.3 14.8 29.3 16.8
Credit | 1000 20 {5} 26.5 24.8 26.6 23.1 23.1 27.1 26.5

transformation. The number of samples and dimensiof®@ Conclusion and Future Work

are summarized in the first columns of Table 3. B _

We compare the results of the Decision Manifolds t(yve have propqsed a cla_s_S|f|er for b'”‘.”“y problgms by lo-
. i : . cal approximation of decision boundaries of a given topol-

Random Forests, linear, polynomial, and radial basis func-

. i ) I 0gy. We have shown how it can be used to fit various
tion SVMs, k-Nearest Neighbors, and Decision Trees, bYow-dimensional non-trivially separable data sets. For se-

averaging the out-of-bag error for 10-fold crossvalidationl.ection of the topology, we have proposed a model selec-

The experiments of these classification algorithms have - ) X
. ; . . tion scheme. Empirical evaluations have shown that Deci-
been performed with R, a computational statistics environ-

3 . . sion Manifolds perform comparable to modern classifiers.
ment®. The parameters have been estimated according o . o :
. ) uture work will include investigation of topological con-
the following model selection schemes (separately for each . : .
: : C Straints, such as non-rectangular topologies, and extension
fold) by sampling the parameter in question in 15 step%(.) multi-class problems
For polynomial SVMs, the degree of the kernel has been P '
tuned in the range of 2-5, and for RBF kernels, the radius
has been tunedi-NN was performed with < k < 29, References
wherek are only the odd numbers. For Random Forests,
500 trees have been trained and random splitting with 30%1] H. Bauer and T. Villmann. Growing a hypercubical
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3R can be obtained at http://cran.r-project.org.



