
Decision Manifolds: Classification Inspired by Self-Organization

Georg P̈olzlbauer, Thomas Lidy, Andreas Rauber
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Favoritenstr. 9–11, Vienna, Austria

email:{poelzlbauer,lidy,rauber}@ifs.tuwien.ac.at

Keywords: Decision Manifolds, supervised learning, ensemble classification

Abstract— We present a classifier algorithm that
approximates the decision surface of labeled data by a
patchwork of separating hyperplanes. The hyperplanes are
arranged in a way inspired by how Self-Organizing Maps
are trained. We take advantage of the fact that the bound-
aries can often be approximated by linear ones connected
by a low-dimensional nonlinear manifold. The resulting
classifier allows for a voting scheme that averages over
neighboring hyperplanes. Our algorithm is computation-
ally efficient both in terms of training and classification.
Further, we present a model selection framework for es-
timation of the paratmeters of the classification boundary,
and show results for artificial and real-world data sets.

1 Introduction

In this paper, we present a neural classifier algorithm for
two-class problems that aims at approximating decision
boundaries locally by multiple linear separating hyper-
planes. This approximation is performed by placing a rep-
resentative that describes the decision boundary in its vicin-
ity where the data sample is sufficiently dense. Our classi-
fier, which we call Decision Manifold, subjects the shape
of the decision boundary to topological constraints, simi-
lar to the output space topology of Self-Organizing Maps.
The local classifiers are moved to their appropriate posi-
tions along the decision boundaries. We further present
a model selection scheme in order to estimate the correct
topology of the decision surface. As we show in the exper-
iments section, our classifier is comparable in performance
to modern supervised learning algorithms. Apart from fast
training, the advantage of our method lies in the exploita-
tion of the classifier topology, which is used during training
to align the classifiers to achieve an ordered representation
of the decision boundary, and to avoid overfitting and local
minima in the placement of the local classifiers. In the last
stage of the training phase, when the positions of the indi-
vidual local classifiers have converged, the topology is used
to fine-tune classification performance by determination of
the optimal voting weights. The remainder of the paper
is organized as follows: In Section 2, we discuss related
techniques. In Section 3, we describe essential concepts
that our technique is based upon. Section 4 outlines the

training algorithm, optimization of classification accuracy
by adapting the voting weights of the classifiers in the com-
mittee, and the model selection framework. Applications to
benchmark supervised learning data sets are given in Sec-
tion 5, as well as comparisons to state-of-the-art classifiers.
Section 6 summarizes our work.

2 Related Work

There has been a lot of effort in the past decades to de-
sign piecewise linear classifiers, starting with the work of
Sklansky [8]. In this particular approach, a number of hy-
perplanes is created and the feature space is split into parti-
tions. However, the algorithm has severe complexity prob-
lems, as the number of partitions grows exponentially with
the number of hyperplanes. Other similar approches in-
clude Learning Vector Quantization [4].

A lazy learning algorithm that is comparable to our ap-
proach is proposed in [2], where for each patternk training
samples from its vicinity are selected. A classifier is trained
on this subset of the data. The results are good in terms of
accuracy, but this approach is computationally expensive,
as a new classifier has to be trained with every pattern to
be classified. Our algorithm is similar in terms of accuracy,
but is not a lazy learner as it takes advantage of local repre-
sentatives that cover an area of the feature space, thus not
suffering from these performance issues.

As our classifier consists of several local classifiers that
perform the actual classification task by a voting scheme,
ensembles of classifiers are related to our technique. Mix-
tures of local experts [6] train a committee of multi-layer
perceptrons in a competitive learning approach where each
MLP specializes on a region of the feature space. The clas-
sification is performed by a selector that assigns the sam-
ples to the local experts.

Our method relies heavily on the concepts of topology
and local linear approximation. Manifold learning meth-
ods, such as ISOMAP [9] and Local Linear Embedding [7],
follow a similar approach, but are mainly used for non-
linear dimensionality reduction and projection. Our goal is
to approximate the decision boundaries rather than the data
points, but we use similar techniques like local approxima-
tion as manifold learning.

3 Elementary Concepts

In this section, we briefly outline several concepts that our
algorithm is based upon and which will serve as building
blocks. The first one is the Batch SOM algorithm for un-
supervised learning, for the details of which beyond the
material presented here please refer to [3]. The SOM is
computed by presenting an unlabeled data set consisting of
vectorsxi ∈ RD to M prototype vectorsmj ∈ RD, that
are usually aligned along a two-dimensional grid topology.
The proptotype vectorsmj are updated forT epochs, such
that they both represent the original data in a vector quan-
tization sense and preserve the grid topology. In this paper,
we use output spaces of arbitrary dimensions rather than
only two dimensional ones, which are most suitable for
visualization purposes [5]. We considerM-dimensional
topologies, where the prototype vectors are aligned in an
equidistant and rectangular way. We refer to such a topol-
ogy as{d1 × d2 × · · · × dM}, whered1, . . . , dM are the
number of nodes per output space axis. The pairwise dis-
tances in output space between the unit associated withmi

and mj are stored in the symmetric topology matrixA.
In order to preserve this topology, the neighborhood ker-
nel K is introduced that determines the mutual influence
of two prototype vectors onto each other based on their
output space distance. The most common choice for the
neighborhood kernel is the Gaussian function, defined as
Kσ(t)(i, j) = exp

{ − Aij

σ(t)2

}
, whereσ(t) is a monoto-

nously decreasing function that defines the width of the
kernel. Other than the sequential version, the Batch SOM
algorithm does not depend on the ordering of the data sam-
ples, and does not require a learning rate parameterα(t). It
is computed by first assigning the samples to their closest
prototype vector, and computing centroids for each parti-
tion:

I(x) = arg min
j∈{1,...,M}

‖x−mj‖ (1)

Sj = {i|x ∈ X ∧ I(xi) = j} (2)

nj =
1
|Sj |

∑

xi∈XSj

xi (3)

where‖ · ‖ denotes Euclidean distance, andI(·) represents
the index of the prototype vector the data pointx is as-
signed to. FunctionI(·) together with the prototype vectors
defines a Voronoi tessellation of the feature space. The set
of indices of samples mapped to prototypemj is denoted
asSj . For referring to the subset of samples belonging to
prototype vectorj, we writeXSj

. | · | denotes the cardi-
nality of a set, i.e. in this case the number of data points
assigned to a prototype vector.ni is the center of the data
points assigned to nodei. The update step of epocht is per-
formed by calculating the new prototype vectorsmj with
the Batch SOM training algorithm:

mj :=
∑M

k=1 |Sk| ·Kσ(t)(k, j) · nk∑M
k=1 |Sk| ·Kσ(t)(k, j)

(4)

The next essential concept is linear classification. The
Decision Manifold method is designed to work with any
kind of classifier that results in a single separating hyper-
plane that can be represented as a vector in homogenous
coordinates. For the sake of brevity and simplicity, we
limit our discussion to the Moore-Penrose Pseudoinverse
(MPI). Other than in the unsupervised setting, data sam-
plesxi ∈ R are labeled with binary classy ∈ {−1, +1}.
The whole data set is written as matrixX, where rows cor-
respond to patterns and columns to features, and a vector
of labelsy. The MPI computes the separating hyperplane
in a single step:

w̃MPI(X,y) = (X̃>X̃)−1X̃>y (5)

After training the classifier, we obtain the normal vector1

w̃(X,y) to the separating hyperplane pointing in the di-
rection of class+1. Using this notation, classification of
datumx is performed by estimating labelŷ.

Finally, some considerations on the topology and shape
of decision surfaces of general classifiers are given. Every
classification algorithm explicitly or implicitly performs an
estimation of such a decision surface which partitions the
feature space into disjoint regions that are assigned a label.
Mathematically, a decision surface is a hypersurface (i.e. of
dimensionD − 1, and of arbitrary shape). We assume this
decision boundary to consist of a finite number of topolog-
ical manifolds, thus the possibly non-contiguous hypersur-
face can be decomposed into contiguous subsets. Bounded
topological manifolds, i.e. ones that do not extend to in-
finity, can be categorized according to their dimensionality.
For example, a line segment is topologically equivalent to
an arc of a circle since both are one-dimensional manifolds.
Further, a topological manifold has a surface that is locally
Euclidean and can thus be approximated by a patchwork of
hyperplanes.

Fig. 1(a) shows a possible decision boundary in three di-
mensions of the formf(x, y) = 1/x. Fig. 1(b) shows a
linear approximation of this surface by three hyperplanes
aligned along a one-dimensional manifold, i.e. a curve.
The approximation shows one important concept that we
exploit: As the function value is constant along they
coordinate, the patchwork can be aligned along a one-
dimensional manifold. There is no need to introduce addi-
tional hyperplanes along they-coordinate as this is already
covered by the linearity of the hyperplanes that extend to
infinity in the y direction. We can thus represent the two-
dimensional decision manifold by a one-dimensional topol-
ogy, along which the hyperplanes are patched together. If
their number is increased, the manifold can be approx-
imated at arbitrary precision. In Section 5, our experi-
ments show that the required topology dimension is usu-
ally very much lower than the feature space dimension.
Fig. 1(b) also gives an outline of the goal of our method:

1Homogeneous coordinates, which include a bias-term in the first co-
ordinate of the vector are denoted by a tilde.

2

0.5 1 1.5 2 2.5 3 3.5 4 0

2

4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b) (c)

DC

A

B

(d) (e)

Figure 1: (a) Decision hypersurface in 3-dimensional space, (b) approximation by 3 local hyperplanes aligned along a
1-dimensional manifold, (c) Graph of{4× 3× 2} Topology, (d) training of a linear classifier; thin lines indicate borders
of Voronoi set, “+” and “-” denote samples, “A” center pointn, “B” separating hyperplane, “C” normalv′, “D” projected
center:c′, (e) smoothing over neighborhood topology: upper part is before, the lower part after the smoothing step

A set of points that represent the center of a classifier hy-
perplane (square markers) and their topologically correct
order (dashed lines). Following this motivation, the algo-
rithm we describe in the next section aims to estimate a
local approximation of the decision hypersurface with the
following characteristics:

• The decision surface is estimated reliably where data
density is sufficiently high, otherwise extrapolation is
used by extending the decision hyperplanes to infinity.

• The decision surface can be approximated locally by
linear classifiers that are ordered along a topology that
is as low-dimensional as possible.

Our classifier consists of a set of local linear classifiers that
are subjected to a given topology. We refer to the clas-
sifier’s topology as the number of local linear classifiers
along the axis in each dimension; the topology of the clas-
sifier in Fig. 1(b) would be{3}. An example of a topology
with {4×3×2} local classifiers is shown in Fig. 1(c) where
each dot at the intersections of the grid’s edges represents
a local linear classifier. These are similar to the units of a
Self-Organizing Map of according dimensionality, i.e. in
this case a 3-dimensional SOM. However, the major differ-
ence to SOMs is that prototype vectors are placed where
data density is high, and our method places hyperplanes
between dense areas of samples with different labels.

4 Decision Manifolds

For supervised learning the training samplesxi are each
associated with a class labelyi ∈ {−1, 1}. The Decision
Manifold consists ofM local classifiers, each specified by
a pair of a representativecj ∈ RD and a classification vec-
tor vj ∈ RD that is orthogonal to the decision hyperplane
of the local classifier. Bothcj andvj are initialized ran-
domly. cj determines the position of the classifier in fea-
ture space, whilevj is relevant for performing the clas-
sification. Samples to be classified are assigned to their
closest representative and classified by the local hyperplane
defined byvj . The goal of the training algorithm is to put

Algorithm 1 Training Algorithm
1: randomly initializecj andvj

2: for t = 1 to T do
3: for j = 1 to M do
4: find set of samplesSj assigned to classifierj
5: compute weightγj

6: if wj > 0 then
7: compute separating hyperplanew̃j

8: compute projectionc′j of center pointnj to w̃j

9: compute normalv′j from w̃j

10: end if
11: end for
12: compute newcj according toA, c′, andσ(t)
13: compute newvj according toA, v′, andσ(t)
14: end for
15: computeσfinal

the representativescj in the adequate positions and to let
vj point in the correct direction for classification. When
training has finished, the Decision Manifold is described
by the tuple{C, V, σfinal, A}, whereA is the given topol-
ogy, C andV are the sets of representatives and classifi-
cation vectors, respectively, andσfinal is the optimal classi-
fication width, which will be defined later in this section.
An example of a trained classifier can be seen in Fig. 2(g).
The thin lines delimit the areas where samples are assigned
to the respective classifier, and thick lines and arrows rep-
resent the separating hyperplane. The dashed lines refer
to the topology of the Decision Manifold. Note that the
connected classifiers are actually next to each other. This
ordering is induced by the imposed one-dimensional topol-
ogy in this example, which will be explained in the course
of this section. We further provide an iterative algorithm
that aims at placing the representatives in a way such that
the predefined topology of the classifiers is preserved, i.e.
that neighboring classifiers are responsible for neighbor-
ing areas of the data space. The adjacency matrixA that
defines the topology, and thus the shape of the decision
boundary, is assumed to be given as a parameter. Select-

3

ing a suitable topology will be explained in greater detail
later in this section.

Training is performed for a predefined number of epochs
T . Our experiments have shown that this parameter is non-
critical to the performance of our classifier, and we assume
T = 5 in the rest of this paper. An outline of the training
algorithm is given in Algorithm 1, and we will refer to the
line numbers when explaining each step. In the first step
of each epoch, the data samples are assigned to the clos-
est local classifier representative (line 4), as in Equs. (1)
and (2). Again, the set of indices of samples mapped to the
jth local classifier is denoted asSj , and the sets of sam-
ples and labels assigned to it asXSj andySj , respectively.
Note that other than in the case of the unsupervised SOM,
the representativescj are not true prototype vectors placed
where data density is high, but rather in positions where
there is a transition between two neighboring areas of dif-
ferent classes, which will be explained in detail in the next
paragraphs. Further, we are interested in the centersnj of
the partitions, which do not necessarily coincide withcj .

Once all the samples have been assigned, a linear classi-
fier is trained for each partition to obtain a separating hy-
perplane. Since this can only be performed if samples of
both classes are present, and the number of training sam-
ples will be of interest in a later step, we compute the
weighting factor (line 5) as follows:

γj =
{ |Sj | if (−1 ∈ ySj

) ∧ (+1 ∈ ySj
)

0 otherwise
(6)

This means that classifier positions that are located in ar-
eas of high data density and contain data samples of both
classes will receive higher weights. Ifγj > 0, we train a
linear classifier (line 7) on the subsetXSj

from which we
can extract the separating hyperplanew̃j(XSj

,ySj
). This

hyperplane must pass through the convex hull of the train-
ing samplesXSj and thus partly lies within the Voronoi
region of representativecj . We are interested in updating
the representativecj such that it lies on the separating hy-
perplane and does not drastically change the Voronoi par-
tition for consecutive epochs. As all the points that lie on
the hyperplane are equivalent to describe it along with the
normal vector, we compute a new preliminary representa-
tive c′j that lies on the hyperplane by projection of the data
centroidnj and store the information for classification in
the normalized vectorv′j :

c′j = πw̃j (nj), v′j =
wj

‖wj‖ (7)

whereπw̃(·) denotes orthogonal projection onto the hyper-
plane specified bỹw. This projection ensures that the rep-
resentative is placed on the decision boundary and is the
point closest to the centroid of the Voronoi partition. A
schematic overview of this update step (from partitioning
in Voronoi sets to calculation ofc′j andv′j) is shown in
Fig. 1(d). For the set of points delimited by the thin lines

that represent the borders of the Voronoi region, the sepa-
rating hyperplane obtained by linear classification is shown
as a dashed line (“B”). The centroidnj (“A”) is projected
along the normal (“C”) to its positionc′j (“D”).

At this point, the topology that puts the representatives
into relation comes into play. As the local classifiers should
be ordered such that they resemble a continuous decision
surface, a smoothing step is performed that takes care of
ordering the local representatives to obey the topology in-
duced by matrixA. This step is very similar to the update
process used in the training of SOMs. We use the neigh-
borhood kernel weighted by the number of samples in each
Voronoi partition to calculate smoothed versions along the
topology of both the classification vectorsvj and repre-
sentativescj . The idea behind this is making them more
similar to their topological neighbors in order to achieve
a smooth representation of the decision boundary and to
avoid overfitting. Using a formula similar to the Batch
SOM training defined in Equ. (4), the updated local clas-
sifiers (lines 12, 13) are

cj =
∑M

k=1 Kσ(t)(k, j) · γk · c′k∑M
k=1 Kσ(t)(k, j) · γk

, (8)

vj =
∑M

k=1 Kσ(t)(k, j) · γk · v′k∑M
k=1 Kσ(t)(k, j) · γk

(9)

The new representativescj and classification vectorsvj are
derived from the preliminary versionsc′j andv′j defined in
Equ. (7) and subjected to the kernel smoothing. Further,
cj andvj are weighted according to topological distance
and by the number of data pointsγj they represent. Thus,
a local classifier that represents many data points will pull
its neighbor that represents relatively few samples in its di-
rection. Also, an effect known in vector quantization as
magnification factors [10] occurs that concentrates repre-
sentatives in dense areas. During the first few epochs, a
high value ofσ ensures that the local classifiers are aligned
according to the topology. Asσ declines, the local clas-
sifiers specialize and reach their final positions. The influ-
ence through topological proximity thus vanishes. Fig. 1(e)
explains how this smoothing happens over a possibly over-
trained situation, and shows how the representatives and
classification vectors are realigned to be more similar to
their neighbors. After this step, the current epoch is fin-
ished.

Fig. 2(a)–(h) shows an example of training with 5 local
classifiers with a one-dimensional topology, referred to as
{5}, on a simple non-linearly separable data set. It consists
of 200 samples that are distributed along a sine-wave with
Gaussian noise, where the class “+” is offset by a small
vertical margin. In the figures, data points are represented
as “+” and “o”. The classification vectorsvj are shown as
the arrows pointing to the direction of the “+” class, and
the hyperplanes as thick, solid lines. The positions of the
representativescj are denoted as small squares where hy-
perplane and classification vector intersect.The topology of

4

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Training algorithm on non-linearly separable data set: (a) after initialization, (b)–(f) after1st–5th epoch, (g) after
training (without data samples), (h) classification results and Bayes optimal decision boundary, (i) only one classifier, (j)
classification with one classifier

the local classifiers is visualized by dashed lines connecting
adjacent local classifiers (i.e. whereAij = 1). In Fig. 2(a),
the randomly initialized Decision Manifold is shown. Af-
ter the first training epoch, depicted in Fig. 2(b), the local
classifiers are arranged in a more orderly fashion as a re-
sult of smoothing according to Equ. (8), yet do not classify
well after this iteration. Figs. 2(c)–(e) show the consecutive
stages of training asσ, the parameter controlling the mutual
influence between topological neighbors, is decreased. The
purpose of the earlier epochs is to roughly align the repre-
sentatives along the topology, while the later epochs are for
fine-tuning the individual areas of each classifier. The fin-
ished Decision Manifold is shown in Figs. 2(f),(g) with and
without the data points. It can be seen in Fig. 2(h), which
shows the Bayes decision boundary as a thick line along
with the decisions over the whole feature space, that the
optimal decision boundary has been approximated very re-
liably. Figs. 2(i),(j) show a trained Decision Manifold of
topology{1} that consists of only a single classifier, and
is thus equivalent to performing a simple linear classifica-
tion. This topology is not capable of approximating the de-
cision boundary sufficiently. Selecting the (unknown) cor-
rect topology in the first place is thus very important and
will be dealt with later in this section.

The complexity of the training algorithm can be cal-
culated as the sum of the sample assignment to repre-
sentativesO(N · M), training of theM linear classifiers
O(M ·Ol(N)), whereOl denotes the classifier complexity,
and the complexity of the SOM update stepO(M2). ForT
epochs, this results inO(T · (N ·M +M ·Ol(N)+M2)).
The training algorithm can be implemented very efficiently.

In our current experiments running on a1.60 GHz com-
puter and a Matlab implementation of the algorithm, the
training duration for a data set withN = 400 andD = 50,
and training withT = 5,M = 20 is less than a second.

When the local classifiers are in their final positions, the
training algorithm enters its last phase where the classifica-
tion performance is fine-tuned on the training data set. In
its most simple form, classification is performed by assign-
ing a data sample to its closest linear classifier in the same
way as during training, and then classifying it according to
its position relative to the hyperplane, and is defined as:

ŷ(x) = sign
(
(x− cI(x))> · vI(x)

)
(10)

A more sophisticated approach takes advantage of the
topology: Since neighboring representatives are expected
to form a smooth decision boundary, voting of the local
classifier ensemble according to the topological proxim-
ity of every classifier to the representative closest tox, i.e.
cI(x), can significantly increase accuracy:

ŷ(x, σ) = sign
(M∑

j=1

Kσ(I(x), j) · ŷ(x)
)

(11)

whereσ is the smoothing width, with higher values increas-
ing the influence of distant classifiers in terms of the topol-
ogy. Effectively, the datumx is classified by all the hyper-
planes, and the final decision is performed as weighted vot-
ing where neighboring classifiers receive a higher weight.
In the last step of the algorithm (line 15), the training set
accuracy (the percentage of correctly classified samples) of

5

(a) (b)

(c) (d)

(e)

Figure 3: Artificial Datasets: (a) quadratic decision sur-
face, (b) 2 Gaussians with different variances, (c) ring and
Gaussian, (d) 2 linear separations, (e) XOR

the classifier is maximized with respect toσ. In our experi-
ments, optimizingσ was responsible for a gain in accuracy
of up to 3%. This is done by sampling several values of
0 < σ ¿ M and we set

σfinal(C, V, X,y) = arg max
σ

acc(C, V, X,y, σ) (12)

Next, we discuss five data sets representing typical non-
linearly separable supervised learning problems, each con-
sisting of 200 samples. They are shown in Fig. 3 together
with the trained Decision Manifold. Note that the dashed
lines again do not determine the classification boundaries,
but indicate the topological neighborhood of the local clas-
sifiers.

The first example, shown in Fig. 3(a), consists of sam-
ples divided by a boundary along a quadratic polynomial.
The Bayes decision boundary is nonlinear in this case. 6
local linear separators are trained, resulting in the ordered
approximation visualized in the figure.

In Fig. 3(b), both classes are normally distributed with
the same center, but class “+” has a higher variance. In
this case, there is considerable overlap between in all re-
gions. The Bayes optimal boundary runs along a circle
where the class conditional probability density functions
intersect. As Fig. 3(b) shows, our algorithm is capable of
finding this border. Within this circle, there will likely be
some misclassifications of class “+”, but class “o” is still
more common there.

In a related example shown in Fig. 3(c), class “o” is dis-
tributed uniformly on a circle, and class “+” is normally
distributed around its center. A Bayes optimal classifier
would assign label “o” to any point on the circle and “+”
otherwise. The Decision Manifold consists of 5 local clas-
sifiers along a one-dimensional bounded topology. This is
a mismatch to the topology of the actual decision boundary,
which is also one-dimensional but circular. However, most
of the classification boundary can still be captured. Due
to the sparsity of samples outside the circle, the decision
boundary does not identify these samples correctly as “+”.

Fig. 3(d) shows the results for a data set where the Bayes
decision boundary is not contiguous. The decision hyper-
surface is split into two linear manifolds (parallel lines).
After training of 6 local classifiers with a one-dimensional
topology, the result shows that our method is capable of
dealing with this problem. It could have been solved with
only 2 linear classifiers, but we chose it as a demonstration
of how the representatives are aligned in case of a topol-
ogy breach. Further, we want to demonstrate that the De-
cision Manifolds’ performance does not deteriorate in case
of over-specification in terms of the number of classifiers.

In Fig. 3(e), separation of the XOR-problem is demon-
strated with four local classifiers. Here, the feature space
is split along the diagonals, and the neighborhood relations
are disregarded for classification, i.e.σfinal is close to zero
and no voting is performed.

It has been mentioned above that selection of a suitable
topology is critical for the performance of our algorithm, as
the topology constrains the shape of the decision boundary.
Here, we present a scheme for topology estimation, and a
model selection approach that trains several Decision Man-
ifolds with different topologies and selects the best one.
Training over a number of topologies can be afforded due
to the computational inexpensiveness of training a Decision
Manifold. The topology connecting the representatives can
have at most dimensionD − 1. If we assume that each
axis of the topology grid contains 5 local classifiers, and
the dimension of the data set is 50, this would result in
549 classifiers, which clearly can not be handled. As the
dimension of the topology is likely to be much lower, we
have to perform a reasonable estimate of the intrinsic di-
mensionality of the data set. This task has been addressed
previously [1], but we apply a simple PCA-guided scheme.
From the data setX, we extract the ordered set of eigenval-
uesλ1, . . . , λD, which is normalized to add up to one. Note
that we do not use PCA for dimensionality reduction of the

6

Table 1: Eigenvalues of PCA, Dimensionality estimation for the topology connecting the local classifiers
i λi Topology fordmax = i Topology without 0,1 Topology Graph
1 0.2618 {10} {10}
2 0.2164 {5× 4} {5× 4}
3 0.1287 {4× 3× 2} {4× 3× 2}
4 0.1094 {3× 3× 1× 1} {3× 3}
5 0.0953 {3× 2× 1× 1× 1} {3× 2}
6 0.0853 {2× 2× 1× 1× 1× 0} not valid
7 0.0525 {2× 2× 1× 1× 1× 0× 0} not valid
8 0.0506 {2× 2× 1× 1× 0× 0× 0× 0} not valid

data set, just for estimation of the topology. For the approx-
imate desired numberm of classifiers distributed along all
discrete axes, we construct the topology as follows:

di =
⌊ m · λi∑dmax

j=1 λj

⌋
, (13)

wheredi is the number of classifiers along the rectangular
topology’sith axis, andb·c denotes rounding down to the
closest integer. The topology is then{d1 × · · · × ddmax}.
dmax is the dimension of the topology, at most the data set
dimensionD. di = 1 can be omitted, since an axis that
only holds one discrete coordinate does not provide any in-
formation, and if anydi = 0, the topology is not valid.
We iteratively construct the topology as a ratio of the up
to D eigenvaluesλ1 : λ2 : · · · : λdmax. For example, the
Pima Indian Diabetes data set, which will be discussed in
the next section, consists of 8 variables. Its ordered eigen-
values are0.26, 0.21, 0.12, 0.10, 0.09, 0.08, 0.05, 0.05; for
m = 10 the candidate topologies are shown in Table 1. We
repeat this procedure by iteratingm = 1 . . . 10 and obtain
a set of 17 distinct topologies (the smallest of which is{1},
the largest is{4×3×2}). We chose 10 as a reasonable up-
per limit for m as real-world problems rarely require large
numbers of separating hyperplanes. For estimation of the
performance of the Decision Manifold with each topology,
we splitX into training and test set. After each classifier
has been trained,σfinal is estimated on the training set. The
resulting Decision Manifolds are then evaluated on the test
set, and the best model is selected.

For estimation of the generalization accuracy, we per-
form 10-fold cross-validation. The remaining 90 % of the
data set are divided into training and test set by the ratio
80 to 20. The topologies for the models are then estimated
by the PCA approach described in the previous paragraphs
and the models are trained, andσfinal is estimated. The re-
sulting classifiers are then evaluated on the test set, and the
best model is selected for validation, resulting in the final
accuracy measurement. This Training-Test-Validation ap-
proach is summarized in Table 2 for one fold.

To summarize the methodological part of this paper, we
recapitulate the properties of our method:

Table 2: Model Selection
Training Test Validation

Classifier Topology
Estimate

 σ

 Test Set

Accuracy

Validation Set

 Accuracy

1

4

3

2

.

.

.

0.66

2.14

1.19

0.27 87 %

88 %

77 %

82 %

Best Model 85 %

• The algorithm is a stochastic supervised learning
method for two-class problems.

• Computation is very efficient.
• The topology induced by adjacency matrixA defines

the ordering and alignment of the local classifiers; it
is also exploited for optimizing classification accuracy
by a weighted voting scheme.

• As the topology of the decision hypersurface is un-
known, we apply a heuristic model selection that
trains several classifiers with different topologies.

• The classifier performs well in case of multiple non-
contiguous decision surfaces and non-linear classifi-
cation problems such as XOR.

5 Experimental Results

The experiments are performed on 7 supervised learning
benchmark data sets taken from the UCI Machine Learn-
ing Repository2: Bupa Liver Disorders, Pima Indian Dia-
betes, Spam, Ionosphere, Statlog Heart Disease, Sonar, and
Statlog German Credit data bases. In case of categorical
features, 1-to-N encoding has been applied, otherwise the
data has been normalized with a zero-mean-unit-variance

2Available at http://www.ics.uci.edu/˜mlearn/MLRepository.html.

7

Table 3: Comparison of average 10-fold cross-validation error (in %)
Data Samples Dim. Topol. Dec. Mf. lin. SVM pol. SVM RBF SVM R. F. Dec. Tr. k-NN
Bupa 345 6 {5× 2} 29.4 29.6 40.0 30.1 27.2 29.3 33.9
Pima 768 8 {3× 2} 20.9 23.3 25.3 23.0 23.3 25.5 25.0
Spam 4601 57 {7} 7.7 7.2 21.7 6.8 4.7 8.6 9.2
Iono 351 34 {3} 12.8 11.7 12.8 6.0 6.3 14.0 14.8
Heart 270 13 {4} 18.5 17.0 17.8 18.5 20.0 19.6 18.1
Sonar 208 60 {3× 3} 14.3 26.4 18.3 16.3 14.8 29.3 16.8
Credit 1000 20 {5} 26.5 24.8 26.6 23.1 23.1 27.1 26.5

transformation. The number of samples and dimensions
are summarized in the first columns of Table 3.

We compare the results of the Decision Manifolds to
Random Forests, linear, polynomial, and radial basis func-
tion SVMs,k-Nearest Neighbors, and Decision Trees, by
averaging the out-of-bag error for 10-fold crossvalidation.
The experiments of these classification algorithms have
been performed with R, a computational statistics environ-
ment3. The parameters have been estimated according to
the following model selection schemes (separately for each
fold) by sampling the parameter in question in 15 steps:
For polynomial SVMs, the degree of the kernel has been
tuned in the range of 2–5, and for RBF kernels, the radius
has been tuned.k-NN was performed with1 ≤ k ≤ 29,
wherek are only the odd numbers. For Random Forests,
500 trees have been trained and random splitting with 30%
of the variables. In this case, no model selection has been
performed, as Random Forests are generally very robust
with respect to the choice of parameters. For Decision
Trees, different pruning thresholds have been tried, a pa-
rameter that influences the size of the tree grown. Decision
Manifolds have been trained withT = 5 epochs, and with
Moore-Penrose-Inverse as underlying linear classifier.

Table 3 summarizes the results. In column “Topol.”, an
example of the most frequently selected topology is shown
(as this may vary over different folds, we chose to depict a
typical one). Decision Manifolds outperform the other al-
gorithms on the Pima and Sonar data sets. Random Forests
and linear SVMs each perform better than our method on 4
of the 7 data sets.k-NN, Decision Trees, and polynomial
SVMs perform worse in most cases. RBF SVMs are better
on 3, and worse on 3 data sets. Overall, there is no algo-
rithm that outperforms every other on all the data sets, and
our technique yields good classification results.

In terms of training and classification time, the SVM
models andk-NN are significantly slower at higher sample
counts then the remaining algorithms (on the Spam data
set, training took almost between one and two hours for
polynomial SVM, RBF SVM, andk-NN, versus 5 to 15
minutes for the rest of the models).

3R can be obtained at http://cran.r-project.org.

6 Conclusion and Future Work

We have proposed a classifier for binary problems by lo-
cal approximation of decision boundaries of a given topol-
ogy. We have shown how it can be used to fit various
low-dimensional non-trivially separable data sets. For se-
lection of the topology, we have proposed a model selec-
tion scheme. Empirical evaluations have shown that Deci-
sion Manifolds perform comparable to modern classifiers.
Future work will include investigation of topological con-
straints, such as non-rectangular topologies, and extension
to multi-class problems.

References

[1] H. Bauer and T. Villmann. Growing a hypercubical
output space in a self-organizing feature map.IEEE
Trans. on Neural Networks, 8(2):218–226, 1997.

[2] L. Bottou and V. Vapnik. Local learning algorithms.
Neural Computation, 4:888–900, 1992.

[3] T. Kohonen. The Self-Organizing Map.Neurocom-
puting, 21:1–6, 1998.

[4] Teuvo Kohonen. Improved versions of learning vec-
tor quantization. InProceedings of the International
Joint Conference on Neural Networks (IJCNN’90),
pages 545–550, 1990.

[5] G. Pölzlbauer, M. Dittenbach, and A. Rauber. Gradi-
ent visualization of grouped component planes on the
som lattice. InWSOM’05, pages 331–338, 2005.

[6] R.Jacobs and M. Jordan. Hierarchical mixtures of ex-
perts.Neural Computation, 6:181–214, 1994.

[7] L. Saul and S. Roweis. Think globally, fit locally:
Unsupervised learning of low dimensional manifolds.
J. of Machine Learning Research, 4:119–155, 2003.

[8] J. Sklansky and L. Michelotti. Locally trained piece-
wise linear classifiers.IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 2(2):101–111, 1980.

[9] J. Tenenbaum, V. de Silva, and J. Langford. A global
geometric framework for nonlinear dimensionality re-
duction.Science, 290(5500):2319–2323, 2000.

[10] T. Villmann and J. Claussen. Investigation of magni-
fication control in Self-Organizing Maps and Neural
Gas.Neural Computation, 18(2):446–469, 2006.

8

