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Abstract— This paper introduces the DANTE projectguide an investor in his/her investment decisions in short-
(Detection ofAnomalies andNovelties inTime £ries with  or long-term horizons [9].
self-organizing networks), the goal of which is to eval- Anomaly detection in time series is particularly chal-
uate several self-organizing networks in the detection génging due to the usual presence of deterministic features
anomalies/novelties in dynamic data patterns. In this paych as trend and seasonality, that can mask the patterns of
per, we first describe three standard clustering-based agyyelty that may be present in data. Inherent non-statjonar
proaches which use well-known self-organizing neural aprocesses, such as regime-switching time series, also im-
chitectures, such as the SOM and the Fuzzy ART alg@yse additional limitations on time series modeling. Fur-
rithms, and then present a novel approach based on the QRermore, some time series may have relatively few sam-
erator Map (OPM) network [1]. The OPM is a generalizapjes; restricting the amount of data available to extract in
tion of the SOM where neurons are regarded as tempofgkmation about its behavior. Finally, time-critical appl
filters for dynamic patters. The OPM is used to build locatations, such as fault detection and surveillance, reguire
adaptive filters for a given nonstationary time series. Norpn-|ine anomaly detection procedures.
parametric confidence intervals are then computed for the

residuals of th_e local mpdels and l.Jsed as .deCiSion_threslﬂbdeling and hypothesis testing [10], can be successfully
qlds for detecting novelties/anomalies. Pfe"m'”"’?ry sanu used to model static (i.e. memoryless) patterns, as these
tions suggest that the proposed approach consistently O’tgf:hniques assume some degree of stationarity of the data.
performs standard clustering-based algorithms. On the one hand, linear stationary dynamic processes can
be handled by standard Box-Jenkins ARMA time series
1 Introduction models. On the .other hand, highly nonImegr and non-
stationary dynamic patterns, such as chaotic or regime-

Anomaly detectiohmethods comprise computational pro-SWitching time series, require a more powerful approach
cedures developed to handle the complex problem of finf? térms of leamning and computational capabilities.
ing data samples which are inconsistent with the already At this point the use of artificial neural networks (ANNs)
modeled set of data. Recently, it has been observed have shown to be useful due to their capability to act as gen-
increasing number of applications of the Self-Organizingral purpose nonlinear system identifier, generalizing the
Map (SOM) to such a problem [2, 3, 4, 5], most of thenAcquired knowledge to unknown data. Most of the ANN-
dealing with static data only, i.e. data for which the tempobased methods rely on supervised ANN models, such as
ral dimension is an unimportant source of information. MLP and RBF architectures [11, 12]. However, a major
However, several real-world applications provide dat@rawback of such models in performing anomaly detection
in a time-ordered fashion, usually in the form of succegh time series is the asymmetry on the size of training data:
sive measurements of the magnitude of one or several val@beled data for training may not be always available or
ables of interest, giving rise to time series data. In ingust may be costly to collect. A plausible solution relies on the
for example, many process monitoring procedures involvesse of clustering algorithms to find subsets of data with
measuring various sensor readings continuously in time g&milar temporal structure [13].
track the state of the monitored system [6, 7, 8]. In finan- However, few clustering-based algorithms for anomaly
cial market modelling, as another example, stock time setetection have been proposed to date. In particular, con-
ries may present patterns (e.g. changes in regime) that agilering the usage of SOM algorithm as a clustering tool
1Depending on the research field, anomaly detection alsosonmer for anomaly detection systems, the former assertion is even
several designations, namely, novelty detection, outiection, fault Stronger. Most of the SOM-based approaches usually con-
detection and condition monitoring. verts the time series into a non-temporal representation

Traditional approaches, such as statistical parametric




(e.g. spectral features computed through Fourier trangherep > 1 is the memory-depth parameter. Weight up-
form) and use it as input to the usual SOM [14]. Anothedating is allowed for a fixed number of stefi$, ..
common approach is to use fixed-length tapped delay linesThe first two algorithms to be described are based on the
at the input of the SOM, again converting the time serieSOM algorithm, while the third one belongs to the family
into a spatial representation [15]. of ART (Adaptive Resonance Theory) architectures. Once
Since the early 1990’s, several temporal variants of thige networks are trained, decision thresholds are computed
SOM algorithm have been proposed with the aim of pelbased on the quantization errors for the SOM-based meth-
forming better than static clustering methods when deabds. ART-based models have an intrinsic novelty-detection
ing with time series data (see [16] for a review). Howeveinmechanism, which can also be used for anomaly detection
to the best of our knowledge, such temporal SOMs havsurposes.
never been used for anomaly/novelty detection purposes.
Thus, the aim of this paper is to understand how effective
are these dynamical self-organizing networks in detecting.1  The Standard SOM
anomalies or novelties in time series. L . .
The preliminary results to be described fits the scopgsgal SOM training IS c-arned ouF using the vectdr(t)
of the DANTE project, the goal of which is to evalu- & INPUL. Thus, the winning neuraii(t), is given by
ate several self-organizing networks in the detection of .
anomalies/novelties in dynamic data patterns. For this pur !
pose, we first describe three standard clustering-based ap-
proaches based on well-known self-organizing neural ayhereQ is the number of neurons andenotes the current
chitectures, such as the SOM and the Fuzzy ART algdteration of the algorithm. Accordingly, the weight vector
rithms, and then present a novel approach based on the @Gje updated by the following learning rule:
erator Map (OPM) network, introduced by Lampinen and
Oja [1] in the late 1980’s. The OPM is a generalization Wi(t + 1) = w;(t) + n(t)h(i*,4;1)[x* (t) — wi(1)], (3)
of the Self-Organizing Map whose neurons are regarded as
temporal filters for dynamic patters. whereh(i*,i;t) is a gaussian function which control the
The OPM model is used to build local adaptive filters foglegree of change imposed to the weight vectors of those
a given nonstationary time series. Non-parametric confileurons in the neighborhood of the winning neuron:
dence intervals are then computed for the residuals (pre-
diction errors) of the local models and used as decision h(i*,ist) = exp ( (i (t) — ri*(t)||2> (4)
thresholds for detecting novelties/anomalies. We compare T ’
the proposed approach with three other self-organizing net
WorkS, two of them based on the SOM (inc|uding a tempoWhereO'(t) defines the radius of the neighborhOOd func-
ral version of it) and the Fuzzy ART network. All these al-tion at iterationt, andr;(¢) andr;- (t) are the coordinates
gorithms are trained on-line and computer simulations af@f neuronsi and* in the output array, respectively. The
carried out to compare their performances. learning rate,0 < n(t) < 1, should decay with time
The remainder of the paper is organized as follows. [#f guarantee convergence of the weight vectors to stable
Section 2 we describe the self-organizing algorithms usediates. In this paper, we use the 1-D SOM topology, and set
in this work to perform anomaly/novelty detection in timen(t) = 1o (1/no)~ "/ "*=), wherer is the initial value
series. In this section, we also present in detail the deeisi of 7, andnr is its final value aftefl’,, . training iterations.
support methodology used to run the simulations. In Sed-he variabler(¢) should decay in time in a similar fashion.
tion 4 the numerical results and comments on the perfor-

mance of all the simulated algorithms are reported. Th ,
paper is concluded in Section 5. 5-2 The Kangas’ Model

(1) = argmin [x (1) - wi(t), i=1,....Q ()

Several SOM-based algorithms for time series cluster-

2 Time Series Clustering ing have been proposed but they have not been used for
anomaly detection purposes yet. Kangas’ model [17] is one

There are many approaches to time series clustering, but @&the simplest temporal SOM algorithms available, whose

limit the scope of our description to prototype-based C|u§.|n(_jerly|ng |d(_aa consists in performing a first-order IIR fil-

tering algorithms. In what concerns the anomlay detectidifing on the input vectae ™ (t) as follows:

task, we assume that the following algorithms are trained

on-line as the data is collected. The input vectors are built X(t) = (1= N=R(t —1) + AxT (1), (5)

through a fixed-length window, sliding over the time series

of interest. Thus, at time stepthe input vector is given by Where0 < A < 1is a memory decay parameter. The
filtered vectorx(t) is then presented to the standard SOM

xT(t) = [x(t) 2(t—1) --- 2t —p+1)]T, (1) algorithm, which is trained as described in Section 2.1.



2.3 The Fuzzy ART Algorithm as a measure of the degree of proximityxdf(t) to a sta-

o . . tistical representation of normal behavior encoded in the
Due to its simplicity of implementation and low computa-

tional cost. thi | luates th ‘ ft}/1\/eight vectors of the SOM.

llona CXSR"I' 'IS pq&eralsé) evaluates Iedpetr otr_marjce?o Once the SOM (or the Kangas' model) has been
uzzy algorithm [18] on anomaly detection In UMey.ained, we present the training data vectors once again

series. The input vector™ (¢) is presented to a competi-

ive | ¢ The winni ni lected to this network. From the resulting quantization errors
Ve 1ayer o Q neurons. The winning neuranis selecte {eq(xT, w5 )}, computed for all training vectors,
according to the following rule:

we compute decision thresholds for the anomaly detec-
tion tests. For a successfully trained network, the sample
©) distribution of these izati
guantization errors should refleet th
'known’ or 'normal’ behavior of the input variable whose
time series model is being constructed.
Several procedures to compute decision thresholds have
, (7) been developed in recent years, most of them based on
well-established statistical techniques [19]), but welgapp
the nonparametric method recently proposed in [3]. For a
given significance levek, we are interested in an interval
within which we can certainly find a percentag® (1 — «)
(e.g.« = 0.05) of normal values of the quantization error.
I’;r(t) A wg;(t) = min {x;’(ﬁ), wii ()} . (8) Hence, we compute the lower and upper limits of this in-
terval as follows:

() = argmax {T3(1)} ,
where the choice function of neureyil;(t), is defined as

_ ) Awi)]

L) = = )

where0 < ¢ < 1 is a very small constant, afd| denotes
the L,-norm of the vecto. The symbol A denotes the
component-wise minimum operator, i.e.

The winning neuron is then tested f@sonance If its

. i , o e Lower Limit (77): This is the100<th percentilé of
weight vector satifies the following condition

the distribution of quantization errors associated with

the training data vectors.
9) e Upper Limit (71): This is the100(1 — §)th per-

centile of the distribution of quantization errors asso-
then the weight vector is updated as follows: ciated with the training data vectors.

Once the decision intervat—, 7] has been computed,
wis(t+1) = B (x7(t) Awi (t) + (1= B) wi (¢) (10) any anomalous behavior of the time series can be detected

on-line by means of the simple rule:

Ix*(t) A wis(t)]
Tl P

where the constan® < p < 1 and0 < 8 < 1 are the
vigilance parameteand the learning rate, respectively. IF eq(xt,wist) € [77, 7]

If the resonance test for the current winning neurdin) THEN x*(t) is NORMAL (12)
fails, then another neuron is selected as the winner, ysuall o
the one with the second highest value1oft). If this neu- ELSE x7(t) is ABNORMAL
ron also fails, then the one with the third highest value for

T;(t) is selected, and so on until one of the selected wirm
ning neuronsg*(¢) matches Eq. (9). If none of the existingrB The Proposed ApproaCh

prototype vectors resonates with the current inpgt VECtOfhe main component of the proposed method is the OPM
then the input vector is declarewveland turned into & ychitecture. Neurons in the OPM are regarded as mathe-
new prototype vector. maticaloperators denoted generically bg(-), represent-
The parametep controls the sensitivity of the Fuzzy jng some kind of filters for temporal patterns. Such oper-
ART algorithm to new input vectors. J§ — 1, more pro-  ators usually contain adjustable parameters, which can be
totypes are created in the competitive layer, increasieg thuned in an adaptive, self-organized fashion. Thus, a given

number of false alarms (false positives). pif— 0, the  gperator may eventually become specialized to a certain
number of prototypes decreases, increasing the numbergfnamical range of the input time series.

missed detection (false negatives). More specifically, let us assume that at discrete time step
t a given time series can be described by the following

2.4 Novelty Detection Methodology global model

Unlike the Fuzzy ART algorithm, the SOM-based methods a(t) = H (x~(t)) +&(t) (13)

previously described do not have an intrinsic mechanism

—(t) = — —9) ... T
to detect novel or anomalous data. However, it has becorﬁ"getrex (t) = [g(t | 1)t x(t I2) ‘ f(t p)]_eB[S a
common practice [2, 3, 8] to use the quantization error vector comprised of last samples of a time serie()

2The percentile of a distribution of values is a numb&; such that a
eq(xT,wiest) = ||xT(t) — wi- ()], (11)  percentage00(1 — a) of the sample values are less than or equaVta



is an unknown (possibly nonlinear) mapping, ait) isa the same logic of the technique presented in Section 2.4,
random sample from a gaussian white noise process wigxcept for the fact that now we use the distribution of the
zero mean and variane€. Let us also assume that theprediction errors of the winning neurons:
global modelH () can be approximated with arbitrary ac-
curacy by a set of) local linear modelsr;,i = 1,...,Q
associated to the neurons in the OPM model.

Since our target application is anomaly detection in time
series, we are interested in providing a good estiniéte
of the current state of the system being monitore@d), The decision rule for the proposed approach method is then
givenx~ (¢) and the local model&;(-). Leti;(t) be the written as follows:
estimate of the current state of the system computed by

e Lower Limit (77): This is the1005th percentile of
the distribution of prediction errorg;- (¢)}.

e Upper Limit (77): Thisis thel00(1—§)th percentile
of the distribution of prediction error;- (¢)}.

neuroni. Then, IF ei-(t) € [r, 771,
THEN  «(t) is NORMAL (19)
eit) = x(t) — &i(t), (14) ELSE  «(t) is ABNORMAL

is the prediction error due to neuron. If the system is
working normally, then one should expect a small value fogq Simulations
the prediction error. Otherwise, something anomalous may

be occurring. _ _ _ _ The feasibility of the proposed approach is evaluated using

A common choice for the local filtef; is the linear au-  input signals derived from four different dynamic systems,
toregressive (AR) model. In this case, the estimate due {free of them realizations of chaotic series. The first one
neuron; of the current value of the time series is given byjs composed by the component of the Lorenz system of
equations

T = T - = ;5 - — 7

H e g e =9 W) o (=), 5= alan—2)—p, £ = ay—esz, (20)
which exhibits chaotic dynamics fer, = 10, oy = 28
ande;, = 8/3. The second and third signals are generated
from the Mackey-Glass differential equation

wherew;(t) = [wi;(t) wa - wy]? is the coefficient
(weight) vector associated to neuro he winning neuron
i*(t) is the one providing the best estimationaf). In

other words, the winning filter at timeis the one with the ) Px(t —7)
smallest absolute value for the prediction error: & = Ra(t) + (1+a(t — 7)10)’ (21)
i*(t) = argnéin{|ei(t)|}, (16) for two distinct values of the delay. We setP = 0.2,
7 : N R = —0.1, 7 = 17 (second signal) and = 35 (third
N argnxlflinﬂx(t) —&®l (17) signal). The fourth signal is a linearR(2) process:

where|u| denotes the absolute value of the scalaiThe z(n+1) = 1.92(n — 1) = 0.99z(n — 2) +n(t), (22)

quantitye;- (t) = x(t) — 24~ (¢) is the prediction error pro-

duced by the current winning neuron. with n(t) is a random sample from a gaussian white noise
The learning rule for the weight vector of neurbis a  Process with zero mean and variamce= 10~°. Figure 1

LMS-like equation, slightly modified by the inclusion of a depicts300 samples of each signal.

neighborhood function: The novelty detection experiment is designed to perform
the on-line detection of an anomalous signal, after train-

wi(t + 1) =w;(t) + n(t)h(i*, i;t)e; (t)x(t), (18) ing the networks with a sequence considefksdRMAL .
=w;(t) + n(t)h(i*, i t)[x(t) — &:(8)]x(t), This role is assigned to the Lorenz series, leaving the two

Mackey-Glass sequences and the AR process as representa-
whereh;« ;(t) is the neighborhood function as defined intives of ABNORMAL time series. For the sake of clarity,
Eq. (4). A successfully trained OPM network shoulddit all different testing sequences are presented sequgntiall
local autoregressive models to a given nonstationary tiniee. a set ofc samples from each series is used as input to
series. Note that an OPM with one single neuron (le=  the four networks, followed by samples of the next series.

1) is equivalent to a linear AR model. Figure 2 shows the prediction errek (¢) collected from
the winning neurons* of the OPM network, when the first
3.1 Anomaly Detection with the OPM k = 1000 samples of the training set consisted of samples

generated by the Lorenz equations. It is worth noting the
In order to use the OPM for anomaly detection purposdsew prediction errors for the first samples of the time se-
we need to define a decision interyal, 7+]. The com- ries, revealing the suitability of the OPM in modelling nor-
putation of the lower/upper limits of this interval follows mal behavior. Note also that when a different time series
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Figure 1: Samples of time series used in the simulations.

Prediction error

4 . . . ‘ : : : Figure 3: Cumulative distributions for prediction errors.

AR

3l
’ Characteristic(ROC) space, and can be used to visually
identify good and bad classifiers. For instance, a perfect bi
Lorenz nary classifier should achieve the (1,0) point at ROC space.
| Now, if we change the percentil€,, the decision interval
[r~, 7] is modified, and a set of points in ROC space
can be derived, allowing the performance comparison to be
evaluated under different degrees of tolerance for the pre-
diction error.

2t

-3t

i i i i \ \ \ Additionally, different configurations for the input sig-
0 500 1000 1500 2000 2500 3000 3500 4000 . .
Sample number nals and network setup are analyzed, using variations on
general parameters, such as the size of memory-depth
Figure 2: Prediction erroe;- (). Each testing sequence Noise variance?, number of neurong), as well specific
hask = 1000 samples. parameters, such as Fuzzy-AR&ndg and Kanga’'s mem-
ory decay\. Figure 4 shows a typical result of the per-
formance comparison among the networks, obtained for

pattern is presented, the prediction errors are consitjeral? = 40 andp = 30.

higher. The best performance is achieved by the proposed
Before applying the methodology described in Sectiomethod, followed closely by Kanga’s model and the Fuzzy
3, it is illustrative to observe the cumulative distributio ART network. It is worth noting that the simple filtering
function (CDF) of the prediction errors for the OPM net-procedure implemented by Eq. (5) improves considerably
work. Figure 3 depicts the CDFs fey- (¢) obtained from  the performance of the Kanga’s model, when compared to
all the different testing sequences, where it is possible e standard SOM model. The Fuzzy ART also performed
verify that ABNORMAL behavior results in distributions closely to OPM and Kanga’s models, even with no explicit
with higher variance. mechanism to process time series data. However, its inher-
A comparative analysis of the performances of the OPMent novelty detection procedure, controled by the vigiéanc
SOM, Kanga’s model and Fuzzy-ART models can bé¢est shown in Eq. (9) can explain its good performance. Fi-
achieved straightforwardly using the percentages of truglly, the excellent performance of the OPM model can
positive and false positive rates. A true positive (TP) & thin part be explained by the neighborhood structure it in-
correct detection of adBNORMAL samplez(t) when herited from the SOM. Instead of updating the weights
the testing signal belongs to novel/abnormal pattern. Af a single filter per input vector as in standard bank of
false positive (FP) is the incorrect detection of noveltfilters, the OPM makes use of the SOM'’s cooperative-
when a testing sample belongs to the training set (i.e. @ompetitive philosophy to jointly update the winning filter
has an already modeled normal dynamics). The point witlind its neighboring filters. As time goes by, the neighbor-
coordinates (FP, TP) is a point in tiiReceiver Operating hood radius is decreased in order to stabilize learning.
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Figure 4: ROC curves for the SOM variations.

5 Conclusions

This paper presented preliminary results of the DANT
project, whose goal is to devise and evaluate se
organizing models for detecting novelties or anomalies
univariate time series. We introduced a novel approa

(4]

(5]

(6]

(7]
(8]

(9]
E
If-

o

based on the Operator Map (OPM) network, a generaliza-
tion of the SOM whose neurons are regarded as tempoi}ﬂ]
filters for dynamic patters. The proposed approach uses
the OPM model to build local adaptive filters for a given
nonstationary time series. Non-parametric confidence "Ei
tervals are then computed for the residuals (prediction er-
rors) of each local model and used as decision thresholds
for detecting novelties/anomalies. We compared the pro-

posed approach with standard clustering-based approaches

which are based on other well-known self-organizing ne

Y13]

ral architectures, such as the SOM and the Fuzzy ART al-

gorithms, to the same problem. Simulations suggested t
the proposed approach consistently outperforms stand
clustering-based algorithms.
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