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Abstract— This paper introduces the DANTE project
(Detection ofAnomalies andNovelties inTime sEries with
self-organizing networks), the goal of which is to eval-
uate several self-organizing networks in the detection of
anomalies/novelties in dynamic data patterns. In this pa-
per, we first describe three standard clustering-based ap-
proaches which use well-known self-organizing neural ar-
chitectures, such as the SOM and the Fuzzy ART algo-
rithms, and then present a novel approach based on the Op-
erator Map (OPM) network [1]. The OPM is a generaliza-
tion of the SOM where neurons are regarded as temporal
filters for dynamic patters. The OPM is used to build local
adaptive filters for a given nonstationary time series. Non-
parametric confidence intervals are then computed for the
residuals of the local models and used as decision thresh-
olds for detecting novelties/anomalies. Preliminary simula-
tions suggest that the proposed approach consistently out-
performs standard clustering-based algorithms.

1 Introduction

Anomaly detection1 methods comprise computational pro-
cedures developed to handle the complex problem of find-
ing data samples which are inconsistent with the already
modeled set of data. Recently, it has been observed an
increasing number of applications of the Self-Organizing
Map (SOM) to such a problem [2, 3, 4, 5], most of them
dealing with static data only, i.e. data for which the tempo-
ral dimension is an unimportant source of information.

However, several real-world applications provide data
in a time-ordered fashion, usually in the form of succes-
sive measurements of the magnitude of one or several vari-
ables of interest, giving rise to time series data. In industry,
for example, many process monitoring procedures involves
measuring various sensor readings continuously in time to
track the state of the monitored system [6, 7, 8]. In finan-
cial market modelling, as another example, stock time se-
ries may present patterns (e.g. changes in regime) that can

1Depending on the research field, anomaly detection also comes under
several designations, namely, novelty detection, outlierdetection, fault
detection and condition monitoring.

guide an investor in his/her investment decisions in short-
or long-term horizons [9].

Anomaly detection in time series is particularly chal-
lenging due to the usual presence of deterministic features,
such as trend and seasonality, that can mask the patterns of
novelty that may be present in data. Inherent non-stationary
processes, such as regime-switching time series, also im-
pose additional limitations on time series modeling. Fur-
thermore, some time series may have relatively few sam-
ples, restricting the amount of data available to extract in-
formation about its behavior. Finally, time-critical appli-
cations, such as fault detection and surveillance, requires
on-line anomaly detection procedures.

Traditional approaches, such as statistical parametric
modeling and hypothesis testing [10], can be successfully
used to model static (i.e. memoryless) patterns, as these
techniques assume some degree of stationarity of the data.
On the one hand, linear stationary dynamic processes can
be handled by standard Box-Jenkins ARMA time series
models. On the other hand, highly nonlinear and non-
stationary dynamic patterns, such as chaotic or regime-
switching time series, require a more powerful approach
in terms of learning and computational capabilities.

At this point the use of artificial neural networks (ANNs)
have shown to be useful due to their capability to act as gen-
eral purpose nonlinear system identifier, generalizing the
acquired knowledge to unknown data. Most of the ANN-
based methods rely on supervised ANN models, such as
MLP and RBF architectures [11, 12]. However, a major
drawback of such models in performing anomaly detection
in time series is the asymmetry on the size of training data:
labeled data for training may not be always available or
may be costly to collect. A plausible solution relies on the
use of clustering algorithms to find subsets of data with
similar temporal structure [13].

However, few clustering-based algorithms for anomaly
detection have been proposed to date. In particular, con-
sidering the usage of SOM algorithm as a clustering tool
for anomaly detection systems, the former assertion is even
stronger. Most of the SOM-based approaches usually con-
verts the time series into a non-temporal representation
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(e.g. spectral features computed through Fourier trans-
form) and use it as input to the usual SOM [14]. Another
common approach is to use fixed-length tapped delay lines
at the input of the SOM, again converting the time series
into a spatial representation [15].

Since the early 1990’s, several temporal variants of the
SOM algorithm have been proposed with the aim of per-
forming better than static clustering methods when deal-
ing with time series data (see [16] for a review). However,
to the best of our knowledge, such temporal SOMs have
never been used for anomaly/novelty detection purposes.
Thus, the aim of this paper is to understand how effective
are these dynamical self-organizing networks in detecting
anomalies or novelties in time series.

The preliminary results to be described fits the scope
of the DANTE project, the goal of which is to evalu-
ate several self-organizing networks in the detection of
anomalies/novelties in dynamic data patterns. For this pur-
pose, we first describe three standard clustering-based ap-
proaches based on well-known self-organizing neural ar-
chitectures, such as the SOM and the Fuzzy ART algo-
rithms, and then present a novel approach based on the Op-
erator Map (OPM) network, introduced by Lampinen and
Oja [1] in the late 1980’s. The OPM is a generalization
of the Self-Organizing Map whose neurons are regarded as
temporal filters for dynamic patters.

The OPM model is used to build local adaptive filters for
a given nonstationary time series. Non-parametric confi-
dence intervals are then computed for the residuals (pre-
diction errors) of the local models and used as decision
thresholds for detecting novelties/anomalies. We compare
the proposed approach with three other self-organizing net-
works, two of them based on the SOM (including a tempo-
ral version of it) and the Fuzzy ART network. All these al-
gorithms are trained on-line and computer simulations are
carried out to compare their performances.

The remainder of the paper is organized as follows. In
Section 2 we describe the self-organizing algorithms used
in this work to perform anomaly/novelty detection in time
series. In this section, we also present in detail the decision-
support methodology used to run the simulations. In Sec-
tion 4 the numerical results and comments on the perfor-
mance of all the simulated algorithms are reported. The
paper is concluded in Section 5.

2 Time Series Clustering

There are many approaches to time series clustering, but we
limit the scope of our description to prototype-based clus-
tering algorithms. In what concerns the anomlay detection
task, we assume that the following algorithms are trained
on-line as the data is collected. The input vectors are built
through a fixed-length window, sliding over the time series
of interest. Thus, at time stept, the input vector is given by

x
+(t) = [x(t) x(t − 1) · · · x(t − p + 1)]T , (1)

wherep ≥ 1 is the memory-depth parameter. Weight up-
dating is allowed for a fixed number of steps,Tmax.

The first two algorithms to be described are based on the
SOM algorithm, while the third one belongs to the family
of ART (Adaptive Resonance Theory) architectures. Once
the networks are trained, decision thresholds are computed
based on the quantization errors for the SOM-based meth-
ods. ART-based models have an intrinsic novelty-detection
mechanism, which can also be used for anomaly detection
purposes.

2.1 The Standard SOM

Usual SOM training is carried out using the vectorx
+(t)

as input. Thus, the winning neuron,i∗(t), is given by

i∗(t) = arg min
∀i

‖x+(t) − wi(t)‖, i = 1, . . . , Q, (2)

whereQ is the number of neurons andt denotes the current
iteration of the algorithm. Accordingly, the weight vectors
are updated by the following learning rule:

wi(t + 1) = wi(t) + η(t)h(i∗, i; t)[x+(t) − wi(t)], (3)

whereh(i∗, i; t) is a gaussian function which control the
degree of change imposed to the weight vectors of those
neurons in the neighborhood of the winning neuron:

h(i∗, i; t) = exp

(

−
‖ri(t) − ri∗(t)‖

2

σ2(t)

)

, (4)

whereσ(t) defines the radius of the neighborhood func-
tion at iterationt, andri(t) andri∗(t) are the coordinates
of neuronsi andi∗ in the output array, respectively. The
learning rate,0 < η(t) < 1, should decay with time
to guarantee convergence of the weight vectors to stable
states. In this paper, we use the 1-D SOM topology, and set
η(t) = η0 (ηT /η0)

−(t/Tmax), whereη0 is the initial value
of η, andηT is its final value afterTmax training iterations.
The variableσ(t) should decay in time in a similar fashion.

2.2 The Kangas’ Model

Several SOM-based algorithms for time series cluster-
ing have been proposed but they have not been used for
anomaly detection purposes yet. Kangas’ model [17] is one
of the simplest temporal SOM algorithms available, whose
underlying idea consists in performing a first-order IIR fil-
tering on the input vectorx+(t) as follows:

x(t) = (1 − λ)x(t − 1) + λx
+(t), (5)

where0 < λ < 1 is a memory decay parameter. The
filtered vectorx(t) is then presented to the standard SOM
algorithm, which is trained as described in Section 2.1.
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2.3 The Fuzzy ART Algorithm

Due to its simplicity of implementation and low computa-
tional cost, this paper also evaluates the performance of the
Fuzzy ART algorithm [18] on anomaly detection in time
series. The input vectorx+(t) is presented to a competi-
tive layer ofQ neurons. The winning neuroni∗ is selected
according to the following rule:

i∗(t) = arg max
∀i

{Ti(t)} , (6)

where the choice function of neuroni, Ti(t), is defined as

Ti(t) =
|x+(t) ∧ wi(t)|

ε + |wi(t)|
, (7)

where0 < ε ≪ 1 is a very small constant, and|u| denotes
theL1-norm of the vectoru. The symbol∧ denotes the
component-wise minimum operator, i.e.

x+
j (t) ∧ wij(t) ≡ min

{

x+
j (t), wij(t)

}

. (8)

The winning neuron is then tested forresonance. If its
weight vector satifies the following condition

|x+(t) ∧ wi∗(t)|

|x+(t)|
≥ ρ, (9)

then the weight vector is updated as follows:

wi∗(t + 1) = β
(

x
+(t) ∧ wi∗(t)

)

+ (1− β)wi∗(t) (10)

where the constants0 < ρ < 1 and0 < β < 1 are the
vigilance parameterand the learning rate, respectively.

If the resonance test for the current winning neuroni∗(t)
fails, then another neuron is selected as the winner, usually
the one with the second highest value forTi(t). If this neu-
ron also fails, then the one with the third highest value for
Ti(t) is selected, and so on until one of the selected win-
ning neuronsi∗(t) matches Eq. (9). If none of the existing
prototype vectors resonates with the current input vector,
then the input vector is declarednoveland turned into a
new prototype vector.

The parameterρ controls the sensitivity of the Fuzzy
ART algorithm to new input vectors. Ifρ → 1, more pro-
totypes are created in the competitive layer, increasing the
number of false alarms (false positives). Ifρ → 0, the
number of prototypes decreases, increasing the number of
missed detection (false negatives).

2.4 Novelty Detection Methodology

Unlike the Fuzzy ART algorithm, the SOM-based methods
previously described do not have an intrinsic mechanism
to detect novel or anomalous data. However, it has become
common practice [2, 3, 8] to use the quantization error

eq(x
+,wi∗ ; t) = ‖x+(t) − wi∗(t)‖, (11)

as a measure of the degree of proximity ofx
+(t) to a sta-

tistical representation of normal behavior encoded in the
weight vectors of the SOM.

Once the SOM (or the Kangas’ model) has been
trained, we present the training data vectors once again
to this network. From the resulting quantization errors
{eq(x

+,wi∗ ; t)}
N
t=1, computed for all training vectors,

we compute decision thresholds for the anomaly detec-
tion tests. For a successfully trained network, the sample
distribution of these quantization errors should reflect the
’known’ or ’normal’ behavior of the input variable whose
time series model is being constructed.

Several procedures to compute decision thresholds have
been developed in recent years, most of them based on
well-established statistical techniques [19]), but we apply
the nonparametric method recently proposed in [3]. For a
given significance levelα, we are interested in an interval
within which we can certainly find a percentage100(1−α)
(e.g.α = 0.05) of normal values of the quantization error.
Hence, we compute the lower and upper limits of this in-
terval as follows:

• Lower Limit (τ−): This is the100α
2 th percentile2 of

the distribution of quantization errors associated with
the training data vectors.

• Upper Limit (τ+): This is the100(1 − α
2 )th per-

centile of the distribution of quantization errors asso-
ciated with the training data vectors.

Once the decision interval[τ−, τ+] has been computed,
any anomalous behavior of the time series can be detected
on-line by means of the simple rule:

IF eq(x
+,wi∗ ; t) ∈ [τ−, τ+]

THEN x
+(t) is NORMAL (12)

ELSE x
+(t) is ABNORMAL

3 The Proposed Approach

The main component of the proposed method is the OPM
architecture. Neurons in the OPM are regarded as mathe-
maticaloperators, denoted generically byG(·), represent-
ing some kind of filters for temporal patterns. Such oper-
ators usually contain adjustable parameters, which can be
tuned in an adaptive, self-organized fashion. Thus, a given
operator may eventually become specialized to a certain
dynamical range of the input time series.

More specifically, let us assume that at discrete time step
t a given time series can be described by the following
global model

x(t) = H
(

x
−(t)

)

+ ε(t) (13)

wherex
−(t) = [x(t − 1) x(t − 2) · · · x(t − p)]T is a

vector comprised ofp last samples of a time series,H(·)

2The percentile of a distribution of values is a numberNα such that a
percentage100(1−α) of the sample values are less than or equal toNα.
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is an unknown (possibly nonlinear) mapping, andε(t) is a
random sample from a gaussian white noise process with
zero mean and varianceσ2

ε . Let us also assume that the
global modelH(·) can be approximated with arbitrary ac-
curacy by a set ofQ local linear modelsGi, i = 1, . . . , Q
associated to the neurons in the OPM model.

Since our target application is anomaly detection in time
series, we are interested in providing a good estimatex̂(t)
of the current state of the system being monitored,x(t),
givenx

−(t) and the local modelsGi(·). Let x̂i(t) be the
estimate of the current state of the system computed by
neuroni. Then,

ei(t) = x(t) − x̂i(t), (14)

is the prediction error due to neuroni. If the system is
working normally, then one should expect a small value for
the prediction error. Otherwise, something anomalous may
be occurring.

A common choice for the local filterGi is the linear au-
toregressive (AR) model. In this case, the estimate due to
neuroni of the current value of the time series is given by:

x̂i(t) = w
T
i (t)x−(t) =

n
∑

j=1

wij(t)x
−(t − j), (15)

wherewi(t) = [w1i(t) w2i · · · wpi]
T is the coefficient

(weight) vector associated to neuroni. The winning neuron
i∗(t) is the one providing the best estimation ofx(t). In
other words, the winning filter at timet is the one with the
smallest absolute value for the prediction error:

i∗(t) = argmin
∀i

{|ei(t)|}, (16)

= argmin
∀i

{|x(t) − x̂i(t)|}, (17)

where|u| denotes the absolute value of the scalaru. The
quantityei∗(t) = x(t) − x̂i∗(t) is the prediction error pro-
duced by the current winning neuron.

The learning rule for the weight vector of neuroni is a
LMS-like equation, slightly modified by the inclusion of a
neighborhood function:

wi(t + 1)=wi(t) + η(t)h(i∗, i; t)ei(t)x(t), (18)

=wi(t) + η(t)h(i∗, i; t)[x(t) − x̂i(t)]x(t),

wherehi∗,i(t) is the neighborhood function as defined in
Eq. (4). A successfully trained OPM network should fitQ
local autoregressive models to a given nonstationary time
series. Note that an OPM with one single neuron (i.e.Q =
1) is equivalent to a linear AR model.

3.1 Anomaly Detection with the OPM

In order to use the OPM for anomaly detection purposes
we need to define a decision interval[τ−, τ+]. The com-
putation of the lower/upper limits of this interval follows

the same logic of the technique presented in Section 2.4,
except for the fact that now we use the distribution of the
prediction errors of the winning neurons:

• Lower Limit (τ−): This is the100α
2 th percentile of

the distribution of prediction errors{ei∗(t)}.
• Upper Limit (τ+): This is the100(1−α

2 )th percentile
of the distribution of prediction errors{ei∗(t)}.

The decision rule for the proposed approach method is then
written as follows:

IF ei∗(t) ∈ [τ−, τ+],

THEN x(t) is NORMAL (19)

ELSE x(t) is ABNORMAL

4 Simulations

The feasibility of the proposed approach is evaluated using
input signals derived from four different dynamic systems,
three of them realizations of chaotic series. The first one
is composed by thex component of the Lorenz system of
equations

ẋ = σL(y−x), ẏ = x(αL −z)−y, ż = xy− ǫLz, (20)

which exhibits chaotic dynamics forσL = 10, αL = 28
andǫL = 8/3. The second and third signals are generated
from the Mackey-Glass differential equation

ẋ = Rx(t) +
Px(t − τ)

(1 + x(t − τ)10)
, (21)

for two distinct values of the delayτ . We setP = 0.2,
R = −0.1, τ = 17 (second signal) andτ = 35 (third
signal). The fourth signal is a linearAR(2) process:

x(n + 1) = 1.9x(n − 1) − 0.99x(n − 2) + n(t), (22)

with n(t) is a random sample from a gaussian white noise
process with zero mean and varianceσn = 10−3. Figure 1
depicts300 samples of each signal.

The novelty detection experiment is designed to perform
the on-line detection of an anomalous signal, after train-
ing the networks with a sequence consideredNORMAL .
This role is assigned to the Lorenz series, leaving the two
Mackey-Glass sequences and the AR process as representa-
tives ofABNORMAL time series. For the sake of clarity,
all different testing sequences are presented sequentially,
i.e. a set ofk samples from each series is used as input to
the four networks, followed byk samples of the next series.

Figure 2 shows the prediction errorei∗(t) collected from
the winning neuronsi∗ of the OPM network, when the first
k = 1000 samples of the training set consisted of samples
generated by the Lorenz equations. It is worth noting the
low prediction errors for the firstk samples of the time se-
ries, revealing the suitability of the OPM in modelling nor-
mal behavior. Note also that when a different time series
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Figure 1: Samples of time series used in the simulations.
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Figure 2: Prediction errorei∗(t). Each testing sequence
hask = 1000 samples.

pattern is presented, the prediction errors are considerably
higher.

Before applying the methodology described in Section
3, it is illustrative to observe the cumulative distribution
function (CDF) of the prediction errors for the OPM net-
work. Figure 3 depicts the CDFs forei∗(t) obtained from
all the different testing sequences, where it is possible to
verify thatABNORMAL behavior results in distributions
with higher variance.

A comparative analysis of the performances of the OPM,
SOM, Kanga’s model and Fuzzy-ART models can be
achieved straightforwardly using the percentages of true
positive and false positive rates. A true positive (TP) is the
correct detection of anABNORMAL samplex(t) when
the testing signal belongs to novel/abnormal pattern. A
false positive (FP) is the incorrect detection of novelty
when a testing sample belongs to the training set (i.e. it
has an already modeled normal dynamics). The point with
coordinates (FP, TP) is a point in theReceiver Operating
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Figure 3: Cumulative distributions for prediction errors.

Characteristic(ROC) space, and can be used to visually
identify good and bad classifiers. For instance, a perfect bi-
nary classifier should achieve the (1,0) point at ROC space.
Now, if we change the percentileNα, the decision interval
[τ−, τ+] is modified, and a set of points in ROC space
can be derived, allowing the performance comparison to be
evaluated under different degrees of tolerance for the pre-
diction error.

Additionally, different configurations for the input sig-
nals and network setup are analyzed, using variations on
general parameters, such as the size of memory-depthp,
noise varianceσ2

ε , number of neuronsQ, as well specific
parameters, such as Fuzzy-ARTρ andβ and Kanga’s mem-
ory decayλ. Figure 4 shows a typical result of the per-
formance comparison among the networks, obtained for
Q = 40 andp = 30.

The best performance is achieved by the proposed
method, followed closely by Kanga’s model and the Fuzzy
ART network. It is worth noting that the simple filtering
procedure implemented by Eq. (5) improves considerably
the performance of the Kanga’s model, when compared to
the standard SOM model. The Fuzzy ART also performed
closely to OPM and Kanga’s models, even with no explicit
mechanism to process time series data. However, its inher-
ent novelty detection procedure, controled by the vigilance
test shown in Eq. (9) can explain its good performance. Fi-
nally, the excellent performance of the OPM model can
in part be explained by the neighborhood structure it in-
herited from the SOM. Instead of updating the weights
of a single filter per input vector as in standard bank of
filters, the OPM makes use of the SOM’s cooperative-
competitive philosophy to jointly update the winning filter
and its neighboring filters. As time goes by, the neighbor-
hood radius is decreased in order to stabilize learning.
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5 Conclusions

This paper presented preliminary results of the DANTE
project, whose goal is to devise and evaluate self-
organizing models for detecting novelties or anomalies in
univariate time series. We introduced a novel approach
based on the Operator Map (OPM) network, a generaliza-
tion of the SOM whose neurons are regarded as temporal
filters for dynamic patters. The proposed approach uses
the OPM model to build local adaptive filters for a given
nonstationary time series. Non-parametric confidence in-
tervals are then computed for the residuals (prediction er-
rors) of each local model and used as decision thresholds
for detecting novelties/anomalies. We compared the pro-
posed approach with standard clustering-based approaches
which are based on other well-known self-organizing neu-
ral architectures, such as the SOM and the Fuzzy ART al-
gorithms, to the same problem. Simulations suggested that
the proposed approach consistently outperforms standard
clustering-based algorithms.
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