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Abstract— We develop a number of fixed point
rules for training homogeneous, heteroscedastic but oth-
erwise radially-symmetric Gaussian kernel-based topo-
graphic maps. We extend the batch map algorithm to the
heteroscedastic case and introduce two candidates of fixed
point rules for which the end-states,i.e., after the neigh-
borhood range has vanished, are identical to the maximum
likelihood Gaussian mixture modeling case. We compare
their performance for clustering a number of real world
data sets.

1 Introduction

Several topographic map formation algorithms have been
introduced that employ Gaussian activation kernels rather
than Voronoi regions, such as in the case of the popu-
lar Self-Organizing Map (SOM) algorithm and its adapted
versions [5]. Reviews of the homoscedastic (equal-
variance) Gaussian case have been introduced by Ober-
mayer’s group [3] and by Heskes [4]. Obermayer and co-
workers showed the connection between different classes
of Gaussian kernel-based topographic map formation algo-
rithms and, as a limiting case, the batch map version of
the SOM algorithm [5]. Heskes showed the connection
between minimum distortion topographic map formation
and maximum likelihood homoscedastic Gaussian mixture
density modeling (GMM). A unifying account of the het-
eroscedastic case was introduced in [10], where the link
was demonstrated between distortion minimization, log-
likelihood maximization and Kullback-Leibler divergence
minimization. Furthermore, kernels other than Gaussians
have also been suggested such as the incomplete gamma-
[9] and the Edgeworth-expanded Gaussian kernels [11].
Another idea for Gaussian kernel-based topographic map
formation is to minimize the Kullback-Leibler divergence,
as suggested by [1], using homoscedastic Gaussians, and
extended by Yin and Allinson [12] to the heteroscedastic
case.

The heteroscedastic kernels are expected to provide a
better density estimate than their homoscedastic counter-
parts, and thus a better indication for the existence of
clusters in the data, but the drawback of at least the
heteroscedastic Gaussian- and heteroscedastic Edgeworth-
expanded Gaussian cases is that no complete set of fixed
point update rules can be derived from their objective

functions, which can be a distortion-, energy- or a log-
likelihood function [10, 11]. Only for the Gaussian kernel
centers such a fixed point rule can be derived.

In this article, we first extend the traditional batch map
algorithm to the heteroscedastic case. We then consider
two candidates of fixed point rules for heteroscedastic (but
homogeneous and radially-symmetric) Gaussian kernel-
based topographic map formation for which the end-states,
i.e., after the neighborhood range has vanished, are identi-
cal to the maximum likelihood Gaussian mixture modeling
case. We compare their topographic map formation behav-
ior, and assess their performance for clustering a number
of real world data sets. We also consider the original batch
map in the comparison where possible.

2 Fixed point rules

2.1 Gaussian mixture modeling

As a starting point, we consider the case of homogeneous
(equal prior probabilities), heteroscedastic (differingvari-
ances) Gaussian mixture density estimation:

p(v) ≈ 1
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with centerwi = [wi1, . . . , wid] ∈ R
d, and radiusσi, and

v = [v1, . . . , vd] a random vector inRd generated from the
probability densityp(v).

A standard procedure to estimate the parameterswi and
σi, ∀i, is by maximizing the (average) likelihood, or by
minimizing the (average) negative log-likelihood for the
sampleS = {vµ|µ = 1, . . . , M} [7]:

F = −logL = − 1
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through an Expectation-Maximization (EM) approach [2].
This results in the following fixed point rules:
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where we have substituted for the posterior probabilities
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. Note that in the Expectation step, we

update the posterior probabilities prior to the Maximization
step, which is the update of the kernel centers and radii.
Note also that we can easily extend the current format to
non-homogeneous GMMs by considering the prior as an
additional parameter.

As a reference example, we consider the two-
dimensional uniform distribution[−1, 1]2 from which we
take 1000 samples. We consider a mixture ofN = 25
formal neurons of which we initialize the kernel centers
by taking samples from the distribution; the kernel radii
are initializedσi = 0.2, ∀i. We train the GMM during
tmax = 100 epochs. Attmax, the average log-likelihood is
-1.440 and the average kernel radius is 0.147 (see Fig. 2A,B
stippled lines). The resulting distribution of the kernelsis
shown in Fig. 1A.

2.2 Batch map and its extension

The original batch map [5], called here BMo, is defined as
follows:

wi =

∑

µ Λ(i∗, i)vµ

∑

µ Λ(i∗, i)
, (5)

with i∗ = argmini‖v − wi‖ andΛ(i∗, i) the traditional
neighborhood function (with arguments in lattice coordi-
nates). Note that the definition of the “winner” neuron
i∗ is actually equivalent to looking for the homoscedastic
Gaussian kernel with the largest activity,i∗ = argmaxiKi.
Bearing this in mind, and observing that the neighborhood
function can be regarded as a probability in lattice space
(noise decoding [6]; confusion probability [4]), we can ex-
tend this rule to the heteroscedastic case:
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,
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with i∗ = argmaxiKi (which is no longer equivalent to
i∗ = argmini‖v − wi‖, but which is required since we
now have heteroscedastic kernels). We call this new EM
algorithm the extended batch map (BMe). However, by the
definition of the winner, the tails of the kernels are cut off,
since the kernels overlap, so that these data points can not
lead to a proper modeling of the kernel radii. As a result,
the actual kernel radii will be underestimated.

To continue with our example, we consider a5 ×
5 lattice of which the kernels are initialized as above,
and that we train with a Gaussian neighborhood function
of which the range is decreased exponentiallyσλ(t) =

σλ(0) exp (−2t/tmax); the initial rangeσλ(0) = 2.5. The
average log-likelihood is shown in Fig. 2A,B (dotted lines).
We observe that the radii quickly grow from their initial
0.2 value to over 0.7 and then converge to a value that is
smaller than what is expected for the maximum likelihood
approach (the average radius is now 0.111). The lattice at
tmax is shown in Fig. 1B.

2.3 Proposition 1

The fixed point weight update rule which follows from
minimum distortion topographic map formation [4] and
which was also proposed in the Soft Topographic Vec-
tor Quantization (STVQ) algorithm [3], both for the ho-
moscedastic case, is:
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j Λ(j, i)P (j|vµ)
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By observing the similar structure of the latter with the
maximum likelihood approach, we propose the following
set of fixed point rules for the heteroscedastic case:
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We call this EM algorithm proposition 1 (Prop1).
We again consider the uniform distribution example with

the same lattice and neighborhood settings as in the pre-
vious case. We now observe that this approach leads to
rapidly growing kernel radii (dashed line in Fig. 2B), which
causes the kernels to map the whole input space instead of
the kernel centers, which stay at the centroid of the distri-
bution (Fig. 1C). This is clearly a non-optimal maximum
likelihood result (the dashed line in Fig. 2A is lower than
the GMM result). However, this does not necessarily mean
that, e.g., for multimodal input densities, the kernel radii
would also cover the whole space, as we will see later (see
Fig. 6). One way to solve this problem is to smooth the
radii updates over time, using a leaky integrator such as
Wegstein’s,σi(t)← (1− α)σi(t− 1) + ασi(t) [5].

2.4 Proposition 2

In the heteroscedastic case that we proposed in [10], we
applied a “bias-variance” decomposition of the weighted
and normalized error term:

∑
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with:
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Hence, we take as theith kernel radiusσi which we esti-
mate from theσjs in eq. (11). Theσjs are updated as in
eq. (8). In this way, since we perform this weighted sum
of inverse variances, we avoid the initially large radii gen-
erated by eq. (8). We call this EM algorithm proposition 2
(Prop2).

The EM algorithm for our uniform density now be-
haves better (full lines in Fig. 2A,B): both the average log-
likelihood and the kernel radius are close to those of the
maximum likelihood approach. The lattice is shown in Fig.
1D).

2.5 Other versions

One could also consider the format suggested in [10]:
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2Λij =

∑

µ

1

d
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P (j|vµ)Λij‖vµ −wi‖2, (12)

with σi as in eq. (11), which was derived from an objec-
tive function (distortion minimization, log-likelihood max-
imization), but which does not lead to a closed form so-
lution for updating the kernel radii. This leads to a com-
plex iterative update scheme, since for large neighborhood
ranges, the determinant becomes close to singular, and
since one should guarantee non-negative solutions for the
σis. We do not further consider this update scheme.

A heuristic version is generated by adopting a mixed
strategy, namely, to update the kernel radii as in maximum
likelihood Gaussian mixture modeling, but to update the
kernel centers with the neighborhood function present:

wi =

∑

µ

∑

j Λ(j, i)P (j|vµ)vµ

∑

µ

∑

j Λ(j, i)P (j|vµ)
,

σ2

i =

∑

µ P (i|vµ)‖v −wi‖2/d
∑

µ P (i|vµ)
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However, it also leads to rapidly increasing kernel radii,
and thus behaves similarly to Prop1, but, in addition, since
it does not use neighborhood information for its kernel
radii, it is more prone to getting trapped in solutions that do
not show the correct the number of data clusters (as was ob-
served with the data sets discussed next; results not shown).
Therefore, it is not further considered.

Finally, there is the heuristic approach suggested by
Yin and Allinson [12], which is minimizing the Kullback-
Leibler divergence. Albeit that these authors only sug-
gested an incremental, gradient-based learning procedure
(thus, with a learning rate), we can easily cast their format
into a fixed point learning scheme:

wi =

∑

µ Λ(i∗, i)P (i|vµ)vµ

∑

µ Λ(i∗, i)P (i|vµ)
,

σ2

i =

∑

µ Λ(i∗, i)P (i|vµ)‖vµ −wi‖2/d
∑

µ Λ(i∗, i)P (i|vµ)
, (14)

with the winner neuron defined asi∗ = argmaxiP (i|vµ),
thus, the neuron with the largest posterior probability.
However, this learning scheme has very limited lattice un-
folding capacity:e.g., the lattice does not unfold for our
uniform distribution example (Fig. 3A). There seems to
be a confusion between the posterior probability and the
neighborhood function (since their products are taken for
the same kerneli): omitting the posteriors leads to the ex-
tended batch map algorithm, which is able to unfold the lat-
tice. The neighborhood functions in the Prop1 and Prop2
EM rules act as smoothing kernels (summing over all pos-
teriors), and do not impede lattice unfolding. To remedy
the problem with Yin and Allinson’s, one could replace
P (i|vµ) by P (i∗|vµ) in the above equations. The lattice
unfolds, but the solution is now similar to that of BMe,
also with the underestimated kernel radius size (Fig. 3B).
Hence, we do not further consider the Yin and Allinson ap-
proach.

3 Simulations

We now consider the following real-world
data sets, which are all available from
the UCI Machine Learning Repository
(http://www1.ics.uci.edu/˜mlearn/MLRepo-
sitory.html ): Iris (M = 150, d = 4), Wisconsin
breast cancer (M = 699, d = 9), and wine recognition
(M = 178, d = 13). The data set sizesM and dimen-
sionalitiesd are listed between brackets. The Iris data
set contains 3 classes (3 types of iris plants), the breast
cancer set 2 classes (benign and malignant), and the wine
recognition set also 3 classes (3 different wine cultivators).

In order to visualize the density surfaces in these higher
dimensional spaces, and to inspect them for the presence
of clusters, which are indicative of the different classes,we
compute the densities at the kernel centers and at the dou-
bly linearly interpolated positions between them (Fig. 4).
The result is that a square lattice ofN vertices becomes a
square lattice of16N−24

√
N +9 vertices. Here we take a

5×5 lattice so that the interpolated lattice has 289 vertices.
For all three examples, we normalize the data sets by sub-
tracting the mean and by rescaling the dimensions so that
they have unit variances. We initialize the kernel centers by
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A B

C D

Figure 1: (A) Fixed point solution for a GMM with 25 ker-
nels and for 1000 samples taken from the two-dimensional
uniform distribution[−1, 1]2 (boxes). The circles corre-
spond to the standard deviation of the Gaussian kernels
(“radii”). (B-D) Fixed point solutions for a5× 5 lattice of
Gaussian kernels using the extended batch map BMe (B),
and two update rules that correspond to the GMM fixed
point rules, when the neighborhood has vanished, Prop1
(C) and Prop2 (D).
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Figure 2: Average log-likelihood (A) and average kernel
radius (B) as a function of training epochs for the update
rules shown in Fig. 1, GMM (stippled line), BMe (dotted
line), Prop1 (dashed line), and Prop2 (full line).

A B

Figure 3: (A) Fixed point solution corresponding to Yin
and Allinson’s approach eq. (14). The lattice did not un-
fold. (B) Idem but now when replacing the posterior prob-
ability P (i|vµ) by P (i∗|vµ). The lattice is now unfolded.
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Figure 4: Computing the density map. The original lat-
tice is shown in full lines; the interpolated lattice in dashed
lines. For one quadrilateral in the original lattice, the inter-
polation procedure is detailed. The position of lattice point
1 in the input space is determined as the average of the ker-
nel centers of lattice points A and B. The same holds for
interpolated lattice points 2, 3 and 4. The input position
of lattice point 5 is the average the input positions of lattice
points 1 to 4. As a result, the linear lattice sizeL is doubled
(actually2L− 1). In order to double the lattice size again,
this procedure is repeated by considering the original ker-
nel centers and the interpolated points as the starting point
of another interpolation run.

taking a uniform lattice in the square[−1, 1]2 in the plane
formed by the first 2 principal components. The evolutions
of the kernel radii are shown in Fig. 6.

The density maps using BMe, Prop1, and Prop2, and the
one’s complement of the U-matrix [8] for the original batch
map (BMo), are shown in Fig. 5,7,8. For the Iris data set
we observe the presence of 3 clusters in all methods except
BMo and perhaps Prop2. For the Wisconsin breast cancer
data set we can only observe 2 clear clusters in the Prop2
and BMo results. For the wine recognition data set we ob-
serve 3 clear clusters in all results, except in Prop2’s result.
From these simulations, except for Wisconsin breast cancer
data set where Prop2 performs best, it seems that BMe and
Prop1 best indicate the correct number of clusters.

4 Conclusion

Since there exists no closed form solution for updating the
kernel radii in heteroscedastic Gaussian kernel-based topo-
graphic map formation, based on an object function, such
as log-likelihood maximization or distortion minimization,
we suggested several candidate fixed point rules on heuris-
tic grounds. We found that, at least for the data sets con-
sidered, the extended batch map algorithm and a new fixed
point rule, for which the limiting case is identical to max-
imum log-likelihood Gaussian mixture modeling, to per-
form best. We also indicated that some of the rules intro-
duced in the literature are either identical or quite similar,
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Figure 5: Results for the Iris data set.Left upper panel: U-
matrix for the original batch map BMo obtained for a5×5
lattice. Right upper panel: Density map for the extended
batch map BMe.Left lower panel: Density map for Prop1.
Right lower panel: Density map for Prop2. See text.
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Figure 6: Average kernel radius as a function of training
epochs for the update rules shown in Fig. 1, given the Iris
data set, and when the neighborhood range vanishes. We
observe that Prop1 and Prop2 converge to the solution ob-
tained with GMM. Same line conventions as in Fig. 2.
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Figure 7: Results for the Wisconsin breast cancer data set.
Same conventions as in Fig. 5.
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Figure 8: Results for the wine recognition data set. Same
conventions as in Fig. 5.

which is an indication that the number of variations on this
theme is limited, at least if the rules should also be able to
unfold the lattices.
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