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Abstract— This paper describes an image browsing
and retrieval application called GalSOM. Bitmap images
are described by their colour histograms and sorted using
an improved variant of the tree-structured self-organising
map (TS-SOM) algorithm. The advantages of using such a
system are discussed in detail, and their application to the
problem of image theft detection is proposed.

1 Introduction
Today’s widespread availability of digital cameras, art
packages and publicly available collections of download-
able artwork and photos have resulted in many users accu-
mulating large collections of bitmap images on their home
computers. These collections or ‘galleries’ of images will
usually be organised in a directory structure to help the user
locate images at a later date, but due to the eclectic man-
ner of their creation, they may easily become confusing to
navigate, especially if insufficient effort has been made to
categorise and/or label the images. Users are faced with
two basic tasks: image browsing and image retrieval.

When browsing, a user is presented with images, either
in series (one at a time), or in parallel (many images at
once). Typically, common image browsers such as Irfan-
view1 present the images in series, after having ordered
them using meta-data such as filename, extension, date, etc.

For parallel browsing it is usually necessary to scale
down the images to a small standardised size; these scaled
down images are called ‘thumbnails’. Most modern oper-
ating systems allow folders of picture files to be browsed in
this manner. Browsing multiple folders of images at once
can be achieved by using quantum tree maps and zoomable
browsing [3] with applications such as PhotoMesa2. It is
also possible to use more advanced methods such as NNk

networks [4], or hyperbolic image viewers that display the
images on a Poincaré map [5].
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Image retrieval consists of locating a desired image or
set of images within a gallery. There are many methods of
achieving this [6], which may include standard file-search
methods such as searching for files or folders of a specific
name or date, using image annotation and keywords, or by
extracting feature vectors describing image content.

The task of content-based image retrieval (CBIR) is a
complex one. We are faced with the problem of locating
an image in a database using a simplified or inaccurate
description of its content, which is usually based on user
input. This can include locating a specific picture the con-
tents of which is known to the user, or of finding all pictures
that fit a given description.

Descriptions can contain both high order and low order
information. For example, if we take a holiday photo, then
a human might describe it as a sandy beach with deep blue
water and sky. The information that the picture contains
a beach, water and sky is high order and may be difficult
to obtain automatically without the use of meta-data (an-
notation/keywords), while the dominant colours and their
respective quantities are low order and may be easily ob-
tained.

There are a number of systems available for performing
CBIR, such as QBIC [9], Photobook [10] and NeTra [11],
which work with various low-level features such as colour,
texture, shape and spatial information and allow different
variations of query-by-example retrieval [7]. The PicSOM
system [15, 16] also incorporates relevance feedback [14].
It is an important example, because it is similar to the appli-
cation described in this paper in that it also uses the ‘tree-
structured self-organising map’ algorithm described in sec-
tion 3.2.

2 GalSOM

2.1 Motivation
We designed the user application GalSOM to solve the
following problem: in a database or ‘gallery’ of RGB-
coloured bitmap images such as digital photos or artwork,
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Figure 1: RGB colour space divided into bins representing
different sets of colours.

locate an image based on the user’s memory of its appear-
ance. Rather than attempt to interpret high-order queries,
we chose to use a low-order description as the basis of
our retrieval method. The most obvious and intuitive low-
order descriptor is colour content. It was necessary to find
colour features that would mimic the human description
(i.e. “This picture contains a lot of light blue, some dark
blue and large areas of sandy yellow”).

2.2 Colour Histograms

The colour histogram is the mathematical equivalent of the
afore-mentioned type of description. To acquire a colour
histogram of an RGB-coded bitmap we simply count the
number of pixels of each shade of colour present in the
picture, creating an N -dimensional feature vector, where
N is the number of shades of colour in the palette being
used. Typically, bitmaps are coded using a palette of 2563

(16 million) colours. To produce meaningful histograms, it
is necessary to reduce the palette to few enough different
shades that they may be visibly distinguished from one an-
other. This can be achieved by segmenting 3-dimensional
colour space (RGB) into bins that represent different sets
of colours. See figure 1.

Too many bins results in similar pictures being classified
as different, while too few groups dissimilar ones together.
Determining the optimal number of colour bins is highly
subjective, because there is no objective measure of which
colours a user will find similar. After experimenting with
different-sized palettes, 64 colours was determined to be
the optimal number, assuming we limit ourselves to cubes
of 2x, x = 1..8, which guarantees that RGB colour space
((28)3 colours) will be divided into bins of equal size. See
figure 2.

One problem with RGB colour space is the lack of per-
ceptual uniformity. This could be solved by transforming
the image to a different colour systems such as HVS, which
is perceptually more uniform than RGB [8]. However, us-
ing RGB is faster as the input data is coded in it by default.
For this reason it was used in GalSOM.

Colour histograms are invariant to rotation and mirror-
imaging. If normalised, they are also scale-invariant.

Figure 2: Colour palettes of 8, 64 and 512 colours. These
are all cubes of 2, 4 and 8 respectively, which guarantees
they will divide colour space (2563 colours) into bins of
equal size.

a) b) c)

Figure 3: a) 2-dimensional input vectors in 3 clusters. b) A
SOM, topologically ordered in a grid of 10×10 neurons c)
The SOM adapts itself to match the input space, each neu-
ron’s codebook vector quantifying a set of inputs. GalSOM
uses 64-dimensional input vectors.

2.3 Visualisation with SOM

GalSOM uses the iterative self-organising map (SOM) al-
gorithm described in [2]. A SOM with a 2D topology will
map a given input space of N-dimensional feature vectors
to a 2D grid. Each map neuron is associated with a “code-
book” vector located in input space. The SOM algorithm
results with these vectors being spread more or less evenly
through input space, approximating the probability distri-
bution of the input vectors, while preserving their topolog-
ical relationships (i.e. the codebook vectors will be po-
sitioned closer to the other codebook vectors that are their
topological neighbours). Finally, input space is divided into
regions defined by the closest codebook vector using vector
quantisation. See figure 3.

The next step is to visualise the grid (or matrix) of code-
book vectors. GalSOM does this by creating a colour map,
using the mean colour values of the colour histograms de-
scribed by the codebook vectors. See figure 4 a). Each
node is associated with a list of input files for which its
codebook vector is the closest to their feature vectors. Due
to their close proximity in input space, these pictures will
be of similar appearance, containing similar colour distri-
butions (figure 4 b)).

The colour map described above is particularly useful for
locating images with a single dominant colour as the mean
value of their colour histogram will tend towards it. This
allows fast location of images based solely on the memory
of their appearance. However, pictures containing a vari-
ety of colours cannot be easily distinguished by their mean
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Figure 4: a) A 5×5 SOM visualising a set of bitmap images
characterised by colour-histogram vectors. Each square is
coloured in the mean colour of the codebook vector’s his-
togram. b) Thumbnails of the images quantified by a se-
lected node, in this case the centre node. Each node in the
map quantifies a small easily-browsable number of similar
images. c) Thumbnails of closest images may be used to
describe the codebook vectors.

colour. In this case, we may get a better representation of
the node’s codebook vector by using a “thumbnail” picture
of the input file closest to it. See figure 4 c).

2.4 Query by Image
An alternate means of using GalSOM is to use a bitmap
image as a query. GalSOM takes the image, calculates
its colour histogram and locates the best-matching neuron.
Images of similar appearance to the query will be located
at that map node. This can be useful if the query picture
is part of a set of similarly themed images, or if we are
looking for similar images to go with a given colour com-
bination for design purposes.

2.5 Optimal Size of SOM
GalSOM works by taking input space and dividing it into
“chunks” of similar data associated with the nodes of a
map. The parameters of the SOM algorithm have been op-
timised primarily towards making those chunks of as equal
a size as possible, while at the same time minimising the
average quantisation error (determined by the average dis-
tance of an input from its closest neuron) and where pos-
sible, preserving the topology of the SOM. Each node will
quantify on average approximately A inputs:

A =def I/N, (1)

where I is the number of inputs and N is the number
of nodes in the map. The optimal map size will be one

where A is the number of images that may be comfortably
displayed (in thumbnail format) and browsed at once.

However, there is no guarantee that all nodes will quan-
tify exactly A images. Typically, there will be a few nodes
centred in tight clusters that quantify a much higher number
of images, while some nodes may end up quantifying few
or no images. These things should be taken into consid-
eration when determining the map size. A method of cir-
cumventing the problem of unevenly mapped input spaces
using multiple mappings is discussed in section 3.4.

It should be noted that larger mappings (i.e. ones with
more neurons than there are inputs) can be used for al-
ternate visualisation methods, currently not fully imple-
mented in GalSOM. These methods rely on the emer-
gent properties of the SOM [17], which use so-called U-
matrices to locate clusters in input space [18, 19]. Because
various sizes of map may be needed to acquire various re-
sults, GalSOM offers multi-resolution mappings using the
“tree-structured” SOM variant described in section 3.

2.6 Comparison to other Systems

The greatest difference between GalSOM and the other
CBIR systems described in section 1, is that it is limited
to a single intuitively understandable feature — the colour
histogram. This affords a degree of transparency that al-
lows it to be used effectively as a tool. Also, limiting the
system to a single feature type allows for the development
of customised outputs such as the colour maps shown in
figure 4.

In contrast, PicSOM [16] — which is one of the most
similar CBIR systems — uses multiple features in an at-
tempt to describe high-order information. Its query-by-
image interface relies on correlation between high-order
information (the query) and low-order (the features being
used) to be successful. The use of multiple, often compli-
cated features makes the system a black box to users, as
the connection between the SOM feature mappings and the
higher-order information being queried is generally unap-
parent.

3 TS-SOM

The tree-structured self-organising map (TS-SOM) [12, 13]
is a hierarchical structure of SOM of exponentially increas-
ing size. Each level of the TS-SOM adapts separately, but
in the lower levels, the search for the best-matching neu-
ron (BMN) is limited to those hierarchically connected to
the BMN of the previous layer. Each layer has double the
dimensions of the previous one, that is 4 times as many
neurons. Hierarchical connections lead from each neuron
on level l, n

(l)
ij , to the four neurons immediately beneath it

on level l + 1: n
(l+1)
2i,2j , n

(l+1)
2i−1,2j , n

(l+1)
2i,2j−1 and n

(l+1)
2i−1,2j−1.

See figure 5.
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Figure 5: A 3-layer TS-SOM with 4 neurons at top layer
and 64 at the bottom.

Figure 6: 4 layers of a TS-SOM show colour distribution
of an input space of images at different resolutions.

3.1 The Basic Algorithm
The algorithm works as follows:

(1) Perform one iteration of the SOM algorithm on the top
layer.

(2) Perform one iteration of the SOM algorithm on the
next layer, but restrict the search for the BMN to the
neurons located under the winning neuron of the pre-
vious layer.

(3) Repeat 2 until all layers have been updated.
(4) Repeat 1 to 3 until the adaptation process is complete.

The advantages of this structure are obvious. Instead of
performing a full-search for the best matching neuron at
the lower layers, which would be time-consuming given
their size, we restrict ourselves to a constant number of
neurons per a given layer, thus greatly increasing the adap-
tation speed. Also, due to the hierarchical structuring, all
the SOMs will be orientated similarly in input space and the
TS-SOM as a whole may be considered a multi-resolution
mapping of the given data set. See figure 6.

3.2 Wide-Search TS-SOM
One unfortunate property of the TS-SOM is the propaga-
tion of errors to the lower layers. Inputs bordering between
two neurons on a higher layer may gradually become more
and more poorly quantified as the search for the BMN be-
comes more and more restricted. During our experiments

we found that on the lower layers, inputs had a tendency to
group together rather than spread themselves evenly over
the map as is typical in well-tuned SOM. As noted in [14],
better results may be achieved by allowing searching for
the BMN in a wider scope, which includes neurons adja-
cent to those directly under a higher layer (figure 7).

3.3 Multi-Resolution Correction
The unfortunate side effect of the wide-search improve-
ment of the TS-SOM algorithm is that the separate layers
become desynchronised. This degrades the quality of the
TS-SOM as a multi-resolution mapping. In [1] we pre-
sented the following simple yet effective solution, which
we call multi-resolution correction (MRC).

3.3.1 The Algorithm

(1) Adapt the TS-SOM using the algorithm described in
3.1 (or alternatively using the wide-search modifica-
tion described in 3.2).

(2) Replace all neurons above the lowest layer using this
formula:

m
(l)
ij =

∑a2
a=a1

∑b2
b=b1

m
(L)
ab

4L−l
(2)

∀i, j : i = 1 . . . 2l, j = 1 . . . 2l,

l = 1 . . . L

where

a1 = 2L−l(i− 1) + 1, a2 = 2L−li,

b1 = 2L−l(j − 1) + 1, b2 = 2L−lj,

and m
(l)
ij is the new position of the neuron topolog-

ically placed at coordinates i, j on level l. L is the
index of the lowest level. Levels are indexed from 1
(highest) to L (lowest).

This converts the higher levels into perfect lower resolu-
tion images of the lowest level. Each neuron becomes the
arithmetic mean of the lowest level neurons hierarchically
connected to it.

3.3.2 Benefits of MRC

Synchronising the separate layers of the TS-SOM greatly
improves the efficiency of the search for the BMN on
the lower layers, especially when coupled with wide-
searching. This can be measured by calculating the per-
centage of input vectors that are correctly classified by the
tree-search algorithm on a given level (i.e. the BMN pro-
duced by the algorithm is the same as the full-search BMN
on that level).

In the example shown in table 1 we can see that apply-
ing MRC to a 7-level TS-SOM substantially increased the
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Tree search quality [%]
Level TS-SOM TS-SOM+MRC

1 100 100
2 98.5 98.3
3 95.4 94.6
4 88.4 92.7
5 81.5 91.2
6 74.6 90.3
7 65.9 87.4

Table 1: This example shows how multi-resolution correc-
tion increases the TSQ on the lowest levels of a 7-level TS-
SOM.

Hierarchical connection

Topological connection

Neuron

Neurons searched in layer 2

Neurons searched in layer 3

Best matching neuron of those searched

Layer 1

Layer 2

Layer 3

Figure 7: Wide-search for the BMN in neighbouring neu-
rons.

tree-search quality (TSQ) on the lowest level from 65.9%
to 87.4% at the cost of fractionally decreasing the scores
on the highest levels. This fractional difference can be dis-
regarded, because most applications (including GalSOM)
make use of the TS-SOM for creating large fast mappings,
which are represented by the lower levels.

Increased TSQ translates into greater accuracy, which in
turn improves all aspects of the mapping including mea-
sures such as average quantisation error. For more details
and discussion of these results, see [1].

3.4 Image Retrieval with TS-SOM

When querying a TS-SOM, we are searching for the BMN
on each level. A TS-SOM with L levels will return L nodes
associated with L different sets of images Ici (ci is the
BMN on level i, i = 1 . . . L). Because the average num-
ber of inputs per node A (see equ. (1)) decreases with each
level, we may expect |Ici | to decrease also (although it is
not guaranteed). Therefore, we are presented with a list
of set sizes from which we may select the node with the
optimal number of images for our purpose (e.g. the one
which displays the highest number of images that can be
displayed onscreen at once).

4 Development
Although GalSOM was developed for a specific applica-
tion, it can easily be expanded to solve other tasks. In par-
ticular, we are currently examining its applicability to the
task of image theft detection.

4.1 Image Theft Detection
Image databases are often run on a commercial basis.
Clients may browse images for free, but are required to pay
a fee before they may use them for their own purposes, e.g.
on their websites. The companies are faced with the prob-
lem of protecting themselves from copyright theft by users
who take the images, modify them and reuse them without
permission. Image theft detection (ITD) differs from stan-
dard CBIR in that instead of searching for all similar im-
ages to a given description, we are searching for all equiva-
lent images to the query. Images are considered equivalent
if one has been derived from the other by quality reduction,
radiometric or colour distortions, cropping, local changes
(such as added logos) or combinations of these.

The cutting edge methods currently under development
at the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic [20] prepro-
cess the images using invariant picture regions. I.e., they
detect areas of the picture that should remain stable even af-
ter the afore-mentioned transformations. The preprocessed
images are then classified with the aid of a binary decision
tree using stochastic indexing.

4.2 ITD with GalSOM
Even without modifications, GalSOM can be used for ITD.
When a user finds a suspicious image, he or she queries it
with GalSOM. The TS-SOM multi-level mapping returns
a screen full of thumbnails taken from the BMN from the
level that returns the optimal number of pictures (as de-
scribed in section 3.4), which allows the user to tell at a
glance, whether or not the image is present.

Colour histograms are invariant to scaling, rotation and
mirroring, so pictures transformed in this manner will be
detected by it. Blurring will affect the histogram, though.
Preliminary experiments have shown that the small logos
(2% of image size) that are typically found on stolen im-
ages do not significantly affect the histogram, so these will
be found too. However, radiometric or colour distortions
such as changes to brightness, contrast or colour hue will
fundamentally change the picture’s colour distribution, so
they are not detected. Cropping is also problematic, unless
the picture is largely homogenous.

4.3 Combining Methods
To make GalSOM an effective tool for ITD, it will be nec-
essary to implement different feature vectors than the ones
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currently in use (i.e. colour histograms). The invariant pic-
ture regions used in [20] could be used as a basis for calcu-
lating features invariant to cropping, while replacing colour
histograms with features defined by point intensity within
the regions should improve invariance to radiometric and
colour distortions. It will then be possible to compare the
TS-SOM (used as a classifier) with the binary trees cur-
rently in use.

5 Summary and Conclusions
In this paper we have described a content-based image
browsing and retrieval application called GalSOM, which
uses an improved variant of tree-structured self-organising
maps to sort and visualise ’galleries’ of bitmap images de-
scribed by their colour histograms. While GalSOM was de-
veloped as a solution to a specific problem, the techniques
it uses could easily be used with other forms of data than
digital graphics. With some modifications, the system has
promise as a means of image theft detection.

The main benefit of this kind of application is that it
describes the data with a single intuitively understandable
feature type that facilitates the development of customised
visualisation techniques, and makes it easy for untrained
users to use.
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